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Rhenium oxide finely dispersed onmesoporous alumina with
uniform pore size was found to be a more active and selective
catalyst for liquid-phase metathesis reactions of terminal and
inner olefins than rhenium oxide on normal �-alumina with
random pore shape.

Olefinmetathesis is an intriguing reaction in terms of not only
the reaction mechanism but also its practical application to
chemicals synthesis in chemical industry. Since the discovery of
olefin metathesis, a variety of homogeneous and heterogeneous
catalyst systems for metathesis have been developed.1 Especially
for the last seven years, ruthenium carbene complexes have been
focused on as powerful homogeneous catalysts for elaborate
syntheses of pharmaceuticals and polymers with various func-
tional groups.2 By contrast to such marvelous development of
homogeneous catalysts, finding new efficient heterogeneous
catalysts for metathesis has been stagnant.

The discovery of FSM-163 and the M41S family4 of
mesoporous molecular sieves with uniform nanometer-sized
pores has stimulated interest in the potential use of thesematerials
as catalyst and catalyst support. In our previous study, we found
that MoO3 supported on mesoporous HMS silica

5 with a narrow
pore-size distribution centered at 2 nm showed much higher
catalytic activity for metathesis of 1-octene in a liquid phase than
MoO3 on commercial SiO2.

6 In our continuous efforts to develop
more effective heterogeneous catalysts for liquid-phase olefin
metathesis than MoO3 on mesoporous silica, we next focused on
mesoporous alumina-supported rhenium oxide, because rhenium
oxide has been known as amore active species formetathesis than
molybdenum oxide, and mesoporous aluminas with homoge-
neous pores and high surface area have just been developed by
Davis7 and Pinnavaia.8 As compared with mesoporous silica,
mesoporous alumina has not been put to practical use in catalytic
organic reactions. In this communication we report how rhenium
oxide fixed on the surface of mesoporous alumina is different in
liquid-phase olefin metathesis from rhenium oxide on conven-
tional �-alumina.

Mesoporous alumina (designated as meso-Al2O3) was
prepared according to Davis’ procedure.9 The prepared meso-
Al2O3 had specific surface area of 564m

2/g, a narrow pore-size
distribution centered at 3 nm, and pore volume of 0.485ml/g.
Re2O7-supporting meso-Al2O3 was prepared by impregnation of
the meso-Al2O3 with an ammonium perrhenate solution.

10 As a
control catalyst, Re2O7 was also supported on typical �-alumina
provided by the Catalysis Society of Japan: JRC-ALO-7 (specific

surface area ¼ 166m2/g; pore diameters ranging from1 to 20 nm;
pore volume ¼ 0:426ml/g).

Metathesis of alkenes (7-hexadecene (cis/trans ¼ 2:9) and 1-
octene) was performed in a batch reactor at 50 or �1 �C.11

Figure 1 shows changes in the conversion of 7-hexadecene in
the metathesis at 50 �C. On 7wt% Re2O7/meso-Al2O3, the
conversion of 1a (cis=trans ¼ 2:9) smoothly reached the
statistical equilibrium value of 50% after 4 h to produce equal
amounts of 7-tetradecene (2a) and 9-octadecene (3a) with 95–
98% selectivity and cis/trans ratio of 0.23. In contrast, on a control
catalyst of 7wt% Re2O7/ALO-7 the metathesis stopped at the
conversion of �30% (selectivity of 2a and 3a ¼ 93{95%; cis/
trans ratio ¼ 0:22) after 10 h due to the deactivation of the
catalyst. It is worth noting that 1) 7wt% Re2O7/meso-Al2O3

revealed high metathesis activity without reductive pretreatment
on the catalyst; 2) a long inner olefin underwent metathesis on
7wt% Re2O7/meso-Al2O3 under mild conditions (at 50

�C) to
reach its chemical equilibrium without the formation of any side
products such as olefinic isomers and polymers of 7-hexadecene.

Figure 2 shows the metathesis of more reactive terminal
olefin, 1-octene (1b) at a lower temperature of �1 �C by use of
7wt% Re2O7/meso-Al2O3 and two control catalysts of 2.1 and
7wt% Re2O7/ALO-7. In the metathesis of 1-octene, 7wt%
Re2O7/meso-Al2O3 revealed better performance in the reaction
rate and the selectivity to 7-tetradecene than the control
catalysts.12 It was reported that rhenium oxide supported on
alumina was present as monomeric surface ReO4

� species,
independent of the rhenium loading.13 Interestingly, a compar-
ison of the metathesis activity among 3.5, 7, and 15wt% Re2O7/
meso-Al2O3 disclosed that the highest activity was attained at
7wt% Re loading, which was inconsistent with the previous
report in which the activity increased with the loading amount of
Re2O7 up to �18wt%.14 2.1wt% Re2O7/ALO-7, which has the
same rhenium oxide density on the alumina surface as 7wt%
Re2O7/meso-Al2O3, showed almost the same catalytic activity as

Figure 1. Metathesis of 7-hexadecene to 7-tetradecene
and 9-octadecene catalyzed by rhenium oxide supported
on mesoporous alumina and �-alumina. (l): 7 wt%
Re2O7/meso-Al2O3, (s): 7 wt% Re2O7/ALO-7.
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7wt%Re2O7/ALO-7with a little improvement in selectivity to 7-
tetradecene. The solvent also affected the rate of themetathesis of
1-octene catalyzed by Re2O7/meso-Al2O3: the reaction in
heptane was 1.5 times faster than that in benzene.

The scanning electron micrographs (SEM) indicated that the
meso-Al2O3 was made up of small alumina particles of 100–
300 nm in diameter, while ALO-7 showed the form of
agglomerates.

On both the transmission electron micrographs (TEM) of
7wt% Re2O7/meso-Al2O3 and 7wt% Re2O7/ALO-7 we could
not observe any rhenium oxide particles on the surface of the
alumina supports. In addition, no diffraction patterns specific to
Re2O7 crystals were found in both the catalysts by powder X-ray
diffractometry. Combined, these analytical results imply that the
rhenium oxide was finely dispersed on the surface of meso-Al2O3

and ALO-7.
Then, the structures of dispersed rhenium oxide on meso-

Al2O3 and �-alumina (ALO-7) were compared by extended X-
ray absorption fine structure (EXAFS) andX-ray absorption near-
edge structure (XANES) spectroscopy.15 Unfortunately, no
difference in Re–O distances between the two catalysts was
observed from the data of EXAFS. Both the rhenium ions on
meso-Al2O3 and ALO-7 were identified as tetra-coordinated
ReO4

� ions based on XANES.
Although the structural uniqueness of Re2O7/meso-Al2O3

has not been fully elucidated, we speculate that the intermediate
oxidation state of rhenium species, which is necessary for the
propagation of the metathesis reaction,1 could be more stabilized
and maintained by the framework of mesoporous alumina than
that of �-alumina, and so that the rate and selectivity of the
metathesis reactions could be enhanced.16

In summary, rhenium oxide finely dispersed on mesoporous
alumina with uniform pore size of 3 nm was a more active and
selective catalyst for metathesis of terminal and inner olefins in a
liquid phase than rhenium oxide on normal �-alumina. Rhenium
oxide onmeso-Al2O3 was foundmore efficient inmetathesis than
that on �-alumina when ReO4

� was fixed on the alumina surface
with the same Re ion density.
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