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A new 3D lanthanide metal–organic framework, {[Ce(L)(DMF)]·2.5(DMF)·3(H2O)}n (1) (H3L=N,N′,N″-tris
(4-carboxyphenyl)-1,3,5-benzenetricarboxamide, DMF=N,N′-dimethylformamide) has been synthesized
under solvothermal condition. Compound 1 features a 3D non-interpenetrated binodal (4, 8)-connected AlB2

topology with a Schläfli symbol of (45.6)2(4
10.614.84), where the C3 symmetry ligand H3L evolves into an

unusual 4-connected node and dinuclear cerium cluster acts as an 8-connected node. Furthermore, compound
1 displays blue emission in the solid state at room temperature.
.
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The construction of metal–organic frameworks (MOFs) with
structural features ofmetallic or inorganic compounds is of high current
interest for their potential applications [1]. The AlB2 topology structure,
featuring the 36 layers alternatively packing with 63 sheets, is an im-
portant and frequently encountered structure type in inorganic
compounds [2]. However, only a few MOFs with AlB2 topology have
been reported to date. In particular, highly-connected AlB2 structures
are still rare, such as binodal (4, 8) and (6, 12)-connected frameworks
[3], possibly owing to the limited coordination sites of metal centers
and the steric hindrance of most commonly used organic ligands [4]. To
construct MOFs with such topology, trigonal organic ligands are
regarded as good candidates, because they have been extensively
used to construct 63 networks [3,5]. Based on above deduction, we
notice a semi-rigid C3 symmetry aromatic carboxamide ligand, N,N′,N″-
tris(4-carboxyphenyl)-1,3,5-benzenetricarboxamide (H3L). Compared
to the widely utilized C3 symmetry tricarboxylic acids, H3L possesses
similar geometric configuration, more coordination sites and the
potential to construct higher-connected and intriguing frameworks
due to the coordination of carbonyl-oxygen atoms of the amide groups
in presence of the induced conditions. On the other hand, lanthanide
ions are considered for this construction, not only because of their
high tendency to coordinate with oxygen atom donors, but also of their
high coordination number, which facilitates the formation of highly-
connected frameworks [6].

Herein, we report a 3D lanthanide MOF {[Ce(L)(DMF)]·2.5
(DMF)·3(H2O)}n (1) with (4, 8)-connected AlB2 topology. In the
structure, the C3 symmetry L evolves into a 4-connected node by the
coordination of one oxygen atom from amide group, together with
dinuclear Ce(III) cluster acting as an 8-connected node. To our
knowledge, it is the first example of lanthanide MOF with (4, 8)-
connected AlB2 topology.

Colourless prismatic crystals of 1 were prepared by the reaction of
Ce(NO3)3 ∙6H2O, H3L and 1,1′-(1,4-butanediyl)bis(imidazole) (bbi)
under solvothermal condition [7]. Single-crystal X-ray diffraction
analysis [8] shows that 1 crystallizes in the monoclinic system, space
group P2(1)/c. Each asymmetric unit consists of one Ce(III) ion, one L
ligand and one coordinated DMF molecule, but not containing bbi. It
should be pointed out that the single-crystal data collected on a
laboratory-based diffractometer does not allow the precise deter-
mination of disordered solvent molecules. Solvent molecules located
in the framework of 1 are determined by considering a combination
of elemental analysis and synthesis systems. And it can be inferred
that there are two and a half DMF and three H2O molecules in 1,
further evidenced by IR spectra (Fig. S1) and thermograviemetric
analysis (TGA) (Fig. S2).

The crystal structure of 1 exhibits a non-interpenetrated 3D
framework and exists a heart-like channel along the Z axes (Fig. 1),
which possesses 41.1% solvent cavity of the total crystal volume
calculated by PLATON [9]. As shown in Fig. 2, each Ce(III) ion is
crystallographical and adopts a nine-coordinated slightly distorted
tri-capped trigonal-prismatic coordination geometry, coordinated
by seven oxygen atoms from deprotonated L ligands, one oxygen
atom from monodentate carbonyl-oxygen of the amide group, and
one oxygen atom from coordinated DMF. The Ce–O distances present
a broad region in range from 2.396(3) to 2.880(4) Å, in which the
longest bond length is longer than those in lanthanide compounds
bridged by carboxylate group, and can be regarded as a weak
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Fig. 1. The 1D heart-like channels viewed along Z axis in the framework of 1.
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interaction [10]. Two Ce(III) ions are bridged together by two pairs of
carboxylate groups of L ligands to give a dinuclear slightly distorted
dodecahedral [Ce2(CO2)4(CONH)2DMF2] cluster (Fig. 3b). On the
other hand, each crystallographical independent L ligand in turn
connects to six Ce(III) ions (Fig. 3a) through its three carboxyl groups
and one carbonyl-oxygen atom of the amide group. Such coordination
mode makes three longer “legs” of L ligand non-coplanar, with an
average dihedral angle between the carboxylate groups and center
phenyl rings of 18.4°. Particularly, the C3 symmetry ligand L evolves
from the tripodal node to 4-connected node due to the additional
coordination of carbonyl-oxygen atom of the amide group. Each
L connects four dinuclear Ce(III) clusters to form a extended 3D
framework.

From the topological point of view, compound 1 can be described
as an interesting binodal (4, 8)-connected AlB2 net with a Schläfli
Fig. 2. The coordination environment of the Ce(III) ions in 1. All the hydrogen atoms
have been omitted for clarity.
symbol of (45.6)2(410.614.84) analyzed by Topos3.2 program [11]. The
well known structure of AlB2 contains 36 layers of Al atoms alter-
natively packing with planar 63 sheets of B atoms [2]. In the simplified
structure of 1, as depicted in Fig. 3c, the 4-connected L with light
blue sticks takes the place of aluminum atoms in AlB2, forming a 2D 36

layers, while other three 4-connected L and three 8-connected
dinuclear Ce(III) cluster with red sticks replace the boron atoms in
an ordered manner, resulting in a puckered 2D 63 sheets, and those
two layers lie in alternating fashion. However, it is different from the
reported (4, 8)-connected AlB2 MOFs, where metal centers act as the
4-connected nodes and organic ligands as the 8-connected nodes.

Inspired by Blatov's statement “Knowing the relations between
nets, one can find possible ways of transitions from one net to
another” [12], we compare the (4, 8)-connected AlB2 nets with the
well known (3, 6)-connected rutile. The topological relationship
between them is schematically illustrated in Fig. 4. Their mutual
transformations can be realized by breaking or forming net edges, for
example, breaking the blue edges in the initial AlB2 net results in a
rutile net. More interestingly, this structure transition is exemplified
between 1 and [(Zn4O)2L4(DMF)2(H2O)3] (2) [13] based on the
same L ligand. When the carbonyl-oxygen atoms of the amide groups
is not coordinated to metal centers, the L acts as a C3 tripodal node,
which can form some classically (3, 6)-connected networks such
as rutile (2). In comparison of their mild synthesis conditions, it can
be inferred that high-coordination Ln(III) ions and solvothermal
reaction under higher temperature are favor to enhancing the co-
ordination capability of carbonyl-oxygen atoms of the amide type
[14], resulting in different structures. This suggests that H3L might be
suitable and promising for the construction of novel architectures
through controlling the coordination of amide group. Furthermore,
the comparison of the structures of 1 and 2 demonstrates that 1 shows
a non-interpenetrated network while 2 displays a two-fold inter-
penetrated network, possibly due to the high connectivity of 1.

The Luminescence spectrum of 1 in the solid state is investigated at
room temperature (Fig. S3). It can be observed that 1 exhibits broad
blue-light emission band at ca. 438 nm, excitation at ca. 350 nm. For
the free H3L ligand, the emission band at the maximumwavelength of
468 nm under the same condition, is attributable to π*→π transitions
of the intraligands. The similarity between 1 and H3L implies that
the luminescent behavior of 1 is ligand-based emission [15]. However,
compared with free H3L, compound 1 exhibits blue-shift emission
peaks. The blue-shift of emission may be attributed to the coordina-
tion of H3L ligand to the Ce(III) centre, which effectively increases the
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Fig. 3. (a), (b) Ball-and-stick and schematic representations of 4-connected (pink) and 8-connected nodes (green), respectively; (c) Schematic representation with (4, 8)-connected
AlB2 topology of 1 with Schläfli symbol of (45.6)2(410.614.84) (4-connected with light blue sticks represent 36 layers of Al atoms, 4-connected alternating with 8-connected with red
sticks represent 63 sheets of B atoms), they are in separate layers; (d) Projection of the well known AlB2 structure along the Z axis. Al and B atoms are in separate layers.
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rigidity of the ligand and reduces the loss of energy by radiationless
decay of the intraligand emission exited state [16]. These observations
indicate that 1 may be suitable as a potential candidate of blue-
fluorescent material.

To explore whether the framework of 1 would break down on
removal of solvent molecules, TGA and powder X-ray diffraction
(PXRD) analysis are introduced. The TGA is performed on 1 from 25
to 1000 °C in N2 atmosphere (Fig. S2). The result indicates that the
Fig. 4. (a) Schematic representation of the (4, 8)-connected AlB2 topology of 1. (blue lines rep
representation of the stretched (3, 6)-connected rutile topology when carbonyl-oxygen ato
topology of 2.
weight loss between 25 and 280 °C is classified to the loss of guest
molecules (H2O and DMF). And the PXRD pattern of the yellow
residual power heated at 280 °C reveals that the powder still pos-
sesses the important characteristic peaks of as-synthesized 1, which
indicates that 1 can retain its framework after removing all guest
molecules. Further heating to 440 °C, the coordinated DMF molecule
is removed and the PXRD pattern suggests the framework of 1 is
collapsed after the loss of coordinated DMF molecule. The sharp
resent the coordination of carbonyl-oxygen atoms of the amide groups); (b) Schematic
ms of the amide groups is not coordinated to Ce(III); (c) Schematic view of the rutile
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weight loss above 440 °C corresponds to the decomposition of
the compound and the solid residues heated at 1000 °C consist of C
(48.53%) and CeO2 (PDF # 34-0394), confirmed by the elemental
analyses and PXRD analyses (Fig. S5).

In summary, the first lanthanide MOF with (4, 8)-connected AlB2
topology has been synthesized, where dinuclear Ce(III) cluster
acts as eight-connected node and the rational tripodal ligand H3L
acts as four-connected node due to the coordination evolution of
one carbonyl-oxygen atom of the amide group. The present work
demonstrates that H3L might be suitable and promising for con-
struction of MOFs with predictable fascinating network topologies
through controlling the coordination preference of potential coordi-
nated atoms.
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CCDC 818363 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
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