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Abstract

Arylboronic esters are readily converted to aryltrifluoroborates in the presence of aqueous fluoride. As such these represent attractive
synthetic precursors that afford one-step labeling with [18F]-fluoride for the generation of PET reagents. Herein we present the synthesis
of a heretofore undisclosed arylboronic ester that is converted to its corresponding trifluoroborate. Essential for contemplating its use in
PET imaging is the demonstration of kinetic resistance to solvolytic defluoridation.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Boronic acids have enjoyed widespread use, from serv-
ing as important building blocks for organic synthesis to
acting as chemical sensors for carbohydrate recognition
and components in pharmaceutically important enzyme
inhibitors.1 Their extensive use in synthetic and bioorganic
chemistry led us to propose their use as precursors for the
formation of PET (positron emission tomography) imaging
agents based on their fluorophilicity for anionic [18F]-fluo-
ride to afford trifluoroborates with extraordinary chemo-
selectivity.2 This potential is highlighted in a preliminary
investigation of 2,4,6-trifluoro-3-carboxamidophenyl-
boronic ester as a captor of aqueous [18F]-fluoride in the
preparation of an [18F]-labeled aryltrifluoroborate PET
radiotracer.3 This particular electron-poor aryltrifluorobo-
rate was discovered to be especially stable to solvolytic
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defluoridation and it was hypothesized that the electron-
deficiency contributed to its stability. Extending that
hypothesis, herein we describe the synthesis of protected
2,6-difluoro-4-carboxyphenylboronic acid (1) as a second
and perhaps equally attractive candidate precursor for
[18F]-capture, as well as its biotin conjugate (2) which
was prepared to demonstrate further potential for biomole-
cule labeling. Compounds 1 and 2 are shown in the next
column.
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2. Results and discussion

Due to the lack of a commercially available, suitably
functionalized electron-poor arylboronic acid, the synthesis
of the carboxy-substituted compound 4 was envisaged by
metallation of 3,5-difluorobenzoic acid (3) (Scheme 1).

Lithiation of 3 with sec-BuLi (or n-BuLi) in THF in the
presence of TMEDA at �78 �C followed by trapping of the
resultant dilithiated species with trimethylborate afforded
2,6-difluoro-4-carboxyphenylboronic acid 4 as the exclu-
sive regiosiomer4 in good yields on the gram scale.5 The
boronic acid 4 was easily converted to the pinacol ester
1a6 in quantitative yield.

Efforts were then undertaken to couple the pinacolate
ester 1a to a biotinylated derivative for the preparation
of a radiotracer precursor with affinity for avidin and
fusion constructs thereof. To this end, the Boc-protected
amino-linked biotin 57 was prepared and treated with
TFA. The resultant TFA salt was then coupled to 1a

using standard EDC coupling conditions with DIPEA or
triethylamine as base (Scheme 2).

Under these conditions, a significant proportion of pro-
todeboronated product 6 (�20–30% as determined by 1H
and 19F NMR)8 was obtained and this decomposition
byproduct could not be easily separated from the desired
boronate ester adduct 2a by standard silica chromatogra-
phy. As a result, other coupling conditions and isolation
methods were explored. The commercially available N,N-
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Scheme 1. Reagents and conditions: (a) sec-BuLi, TMEDA, THF, �78 �C
then B(OMe)3 then HCl, 75%; (b) R = Me, pinacol, THF/PhMe, 40 �C,
quant.; (c) R = Ph, benzopinacol, THF/PhMe, reflux, 72%.
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Scheme 2. Reagents: (a) TFA, CH2Cl2; (b
diethanolaminomethyl polystyrene (DEAM-PS) resin9

was employed in an attempt to immobilize the boronic acid
4 onto a solid support. As expected for electron-poor aryl-
boronic acids, a low yield of immobilization (44%) was
obtained and, upon examination of the remaining unbound
material, it was discovered that a significant portion had
also undergone protolytic deboronation.10 Attempts to
protect 2 with equimolar amounts of unbound N-methyl-
diethanolamine gave similar results.11 Although this
phenomenon has not been well characterized in the
literature, arylboronic acids containing strong electron-
withdrawing groups are known to be susceptible to this
type of deboronation under basic conditions.12 Conse-
quently, the coupling of 1a with the biotin-linked amine
was repeated using pyridine as a milder base to avoid the
formation of 6. Notably, this minor modification provided
the desired biotinylated adduct13 cleanly in 60% yield with
little formation of deboronated 6 (<5%) as observed by 1H
and 19F NMR.

Given this concern, boronic acid 4 was subsequently
protected by treatment with benzopinacol in refluxing
THF/toluene using a Dean–Stark apparatus (Scheme
1).14 Benzopinacolate 1b proved to be considerably more
robust than the corresponding pinacolate 1a and afforded
the biotin–boronate ester 2b cleanly and in good yield after
coupling with 5 (Scheme 2) and with considerably less pro-
todeboronated material.15

The precursor carboxylic acid 1b and the biotin–boro-
nate ester conjugate 2b were tested as captors for aqueous
[18F]-fluoride via the formation of [18F]-labeled aryltriflu-
roborate PET imaging agents as described in the earlier
report.3 Briefly, [18F]-labeled trifluoroborates were synthe-
sized by incubating 5 lL of a 200 mM Boronic acid/ester
solution in DMF with 5 lL 400 mM KHF2 solution pH
3–4 (4 equiv of fluoride), containing a minimum of
�20 lCi of [18F]-fluoride (radioactivity at the start of
reaction).

After 1 h of labeling at room temperature, a 1 lL
aliquot of the labeling reaction was diluted 200-fold into
200 lL of a solution of 200 mM phosphate buffer pH 7.4
and 100 mM [19F]-KF and allowed to solvolyze for a
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Fig. 1. Compounds 1b and 2b are converted to aryltrifluoroborates in the
presence of [18F]-fluoride in buffered KHF2 pH 4.5. Following one hour of
labeling, the fluoridation reaction is diluted 200-fold into 100 mM K19F
pH 7.5 for various time periods 1, 60, or 240 min. The aryltrifluoroborate
is resolved from free fluoride using 5:95 NH4OH/EtOH and the TLC plate
is subjected to autoradiography on a phosphor-storage screen. The
relative autoradiographic density corresponding to the ArBF3 and anionic
fluoride can be quantified using the program IMAGEQUANT.
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period of 240 min, 60 min, or 1 min. At the end point, a
volume of 0.5 lL from each ‘chase reaction’ was spotted
on a TLC plate and resolved in 5:95 NH4OH/EtOH. The
ArBF3 cleanly separated from free fluoride with an Rf of
0.9, as shown in Figure 1.

Any solvolytic loss of fluoride results in the correspond-
ing difluoroborane, which under aqueous conditions would
either hydrolyze completely to the boronic acid, or revert
to the unlabeled [19F]-containing aryltrifluoroborate isoto-
polog. Furthermore, the large excess of [19F]-KF added
after labeling prevented any recapture of [18F]-fluoride by
a fully hydrolyzed boronic acid upon drying of the TLC
plate dried.

Because thermodynamics dictate that at equilibrium the
[18F]-fluorine atom from the aryltrifluoroborate must com-
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Fig. 2. Exponential decay fit for the trifluoroborates of compound A (left pane
over 240 min.
pletely exchange (>99%) in the presence of the large excess
of [19F]-KF, this isotopic exchange experiment followed by
TLC separation and autoradiography effectively enables us
to gauge a time-dependent increase in free fluoride and a
concomitant decrease in the trifluoroborate.2,3 Using
IMAGEQUANTTM following autoradiography, the extent of
isotopic exchange could be calculated using the method
of initial rates or via a first-order decay fit shown in Figure
2 where the rate constants for solvolysis for the trifluoro-
borates of 1b and 2b are 1.6 ± 0.4 � 10�4 min�1 and
2.8 ± 0.9 � 10�4 min�1, respectively.

In this case, the trifluoroborates formed from com-
pounds 1b and 2b, displayed very little fluoride exchange,
following a 4-h incubation and TLC resolution.

The aqueous stability of 1b–BF3 in phosphate buffer was
also measured by 19F NMR.3b This method allows one to
quantitate the hydrolysis of an aryltrifluoroborate by mea-
suring the rate of decrease of the trifluoroborate signal and
the rate of increase in free fluoride over a sufficiently long
time period compared to the half-life of 18F. No other
mono- or difluorinated intermediates were observed, thus
allowing the total solvolysis of the ArBF3 to be governed
by dissociation of the first fluoride in a single rate-limiting
step that is best approximated by a pseudo first-order rate
constant. The kinetics of solvolysis for 10 mM 1b–BF3 in
100 mM phosphate buffer pH 7.5 were thus measured at
5 min, 1 h, 4 h, 9 h, and 24 h, where the integration values
for ArBF3 (�56 ppm) and free fluoride (�43 ppm) were fit
to the equation ([ArBF3]/([ArBF3] + [F]))t = ([ArBF3] +
[F])0e�kt and a rate constant of 6.8 ± 0.4 � 10�4 min�1

was obtained (data not shown) and is in generally good
agreement with the value obtained from the autoradio-
graphy. That the observed rate constant obtained from
the autoradiographic analysis was a bit lower that obtained
by 19F NMR is due to the presence of 100 mM 19F that
reduces the kobs value. The stability of 10 mM 1b–BF in
200 mM phosphate buffer pH 5.7 was also measured to
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afford a rate constant of 3.5 ± 1.5 � 10�4 min�1. This
result demonstrates increased stability of 1b–BF3 at lower
pH, conditions which reflect certain intracellular localiza-
tions should such an aryltrifluoroborate cross the cell
membrane.

These data, taken together, indicate that this particular
aryltrifluoroborate is kinetically very stable with respect
to solvolytic defluoridation.

3. Conclusions

In summary, 2,6-difluoro-4-carboxyphenylboronic acid
was readily prepared and easily protected as either its pina-
col or the benzopinacol boronate ester. Further derivatiza-
tion of both boronates with a biotinylated amine was
accomplished smoothly under mild conditions to afford
PET imaging precursors suitable for [18F]-labeling. This
robust synthesis will allow for the attachment of 1 to other
useful biomarkers besides biotin, examples of which will be
reported in due course.

In order to demonstrate the kinetic stability of this aryl-
trifluoroborate with respect to solvolytic loss of fluoride,
we used an isotopic exchange experiment that involved
placing trace amounts of [18F]-trifluoroborate in a solution
containing a large excess of [19F]-fluoride. This experiment
measures the rate of loss of a single fluorine atom, as anio-
nic fluoride, from the parent aryltrifluoroborate to afford
the aryldifluoroborane, which is considered highly unstable
in aqueous media. The resulting difluoroborane intermedi-
ate went undetected as it rapidly partitioned to either the
fully hydrolyzed arylboronic acid/arylborate, or back to
the aryltrifluoroborate, which is not radioactive as a conse-
quence the large excess of [19F]-fluoride present.

Although it is uncertain whether the aryldifluoroborane
completely hydrolyzed to the unlabeled arylboronic/aryl-
borate or reacted with 100 mM aqueous [19F]-fluoride at
pH 7.5 to regenerate the unlabeled aryltrifluoroborate
isotopolog, nevertheless this experiment estimates the rate
of loss of an atom of fluoride via a single rate-limiting step.
Although only 3 time points were taken in this case leading
to some error, it is clear that very little loss occurs over a
period of 240 min, which is more than twice the half-life
of the 18F-fluoride (see Ref. 3a). This aqueous stability
was independently supported by a more thorough analysis
using 19F NMR. Unless the presence of 100 mM free fluo-
ride enhanced fluoride exchange, the same stability should
be observed under physiological conditions (i.e., in vivo)
and as such this trifluoroborate should be cleared from
the blood stream to the bladder without solvolytic loss of
[18F]-fluoride to the bone.
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