Laser Flash Photolysis Study on the Hydrogen Atom Transfer Reaction from Triplet 2-Naphthylammonium Ion to Benzophenone. Remarkable Proton Effect^{1a,b}

Seiji Kohno, Mikio Hoshino, 1c and Haruo Shizuka*

Department of Chemistry, Gunma University, Kiryu, Gunma 376, Japan (Received: September 5, 1990; In Final Form: January 18, 1991)

The laser flash photolysis study at 355 nm in the 2-naphthylammonium ion (RNH₃⁺) and benzophenone (BP) system has been carried out in methanol-water (9:1 v/v) at 290 K. At first, triplet benzophenone (3BP*) produced by fast intersystem crossing of $^{1}BP^{+}$ excited at 355 nm is quenched by RNH₃⁺ with almost diffusion-controlled rates (1.1 × 10 10 M⁻¹ s⁻¹ at $[H_2SO_4] = 0.015 \text{ M}; 3.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ at } [H_2SO_4] = 0.5 \text{ M}$). The triplet 2-naphthylammonium ion (${}^3RNH_3^{++}$) is produced in the nanosecond region by triplet energy transfer from ${}^{3}BP^{*}$ to RNH_{3}^{+} with efficiencies of 0.41 ($[H_{2}SO_{4}] = 0.015 M$) and 0.33 ([H₂SO₄] = 0.5 M) at [RNH₃⁺] = 3.0×10^{-3} M and at [BP] = 1.12×10^{-2} M, competing with hydrogen abstraction of ³BP* from solvent (methanol) or RNH₃* molecules. Subsequently, in the microsecond region the hydrogen atom transfer (HT) reaction from ³RNH₃^{+*} to ground BP occurs effectively to give the naphthylamine cation radical (RNH₂⁺⁺) and the ketyl radical (>COH). The decay rate $(\tau_{obsd})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ increases with an increase of the BP concentration, and at higher BP concentrations a leveling off is observed. The $(\tau_{obsd})^{-1}$ value decreases drastically with an increase in acid concentration. The mechanism of the HT reaction can be accounted for by the intracomplex HT reaction of the triplet exciplex $^{3}(RNH_{3}+...>CO)^{*}$ with a rate constant of ca. 5×10^{6} s⁻¹. At higher acid concentrations, the triplet complex is decomposed by protonation to give free ³RNH₃^{+*} and BP, resulting in suppression of the rate for the HT reaction.

Hydrogen atom transfer is one of the elementary processes in chemistry along with electron transfer or proton transfer. Many studies on intermolecular and intramolecular hydrogen abstraction reactions in the triplet state of carbonyl compounds have been reported.²⁻¹⁵ It is known that the reaction proceeds by either hydrogen atom abstraction or electron transfer followed by proton transfer.

However, little attention has been paid to hydrogen atom transfer from triplet aromatic compounds to the ground aromatic ketones until very recently. We have demonstrated the hydrogen atom transfer (HT) reaction from naphthol (ROH) to ground benzophenone (BP) by means of laser flash photolysis. 16 In a preliminary report, the HT reaction from triplet naphthylammonium ion (3RNH3+*) to ground carbonyl compounds has been also shown.¹⁷ It is well-known that in the excited singlet state of ROH or RNH₃⁺ proton transfer takes place effectively. ¹⁸ The HT reaction from ³ROH* to BP was considered to proceed via the triplet exciplex ³(ROH····>CO)*. ¹⁶ However, the direct HT reaction from ³ROH* to BP without the triplet exciplex was suggested by Gorman et al. 19 Therefore, there is an ambiguity

(1) (a) This paper is dedicated to Professor Paul de Mayo (University of Western Ontario) on the occasion of his retirement. (b) The preliminary account of this paper was presented at the Symposium on Chemical Reactions, Nagaoka, Japan, July, 1988. (c) The Institute of Physical and Chemical Research, Wako Saitama 351-01, Japan.

(2) Scaiano, J. C. J. Photochem. 1973/1974, 2, 81.

- Johnston, L. J.; Scaiano, J. C. Chem. Rev. 1989, 89, 521.
 Wagner, P. J. Acc. Chem. Res. 1971, 4, 168.
 Wagner, P. J. Top. Curr. Chem. 1976, 66, 1.
 Wagner, P. J. Acc. Chem. Res. 1989, 22, 83.
 Turro, N. J.; Dalton, J. C.; Dawes, K.; Farrington, G. Acc. Chem. Res. 1976, 66, 1. 1972, 5, 92.
- Dalton, J. C.; Turro, N. J. Annu. Rev. Phys. Chem. 1970, 21, 499. (9) Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, CA, 1978.
 (10) Cohen, S. G.; Parola, A.; Parsons, G. H., Jr. Chem. Rev. 1973, 73,
- (11) (a) Formsinho, S. J. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1913.
- (b) Formsinho, S. J. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1978.
 (12) Okada, T.; Karaki, T.; Mataga, N. J. Am. Chem. Soc. 1982, 104,
- (13) (a) Peters, K. S.; Frelich, S. C.; Shaefer, C. G. J. Am. Chem. Soc.
 1980, 102, 5701. (b) Shaefer, C. G.; Peters, K. S. J. Am. Chem. Soc. 1980, 102, 5766. Simon, J. D.; Peters, K. S. J. Am. Chem. Soc. 1981, 103, 6403.
 (14) Bhattacharyya, K.; Das, P. K. J. Phys. Chem. 1986, 90, 3987.
- (15) (a) Hoshino, M.; Seki, H.; Kaneko, M.; Kinoshita, K., Jr.; Shizuka, H. Chem. Phys. Lett. 1986, 132, 209. (b) Hoshino, M.; Shizuka, H. J. Phys. Chem. 1987, 91, 714. (c) Hoshino, M.; Seki, H.; Shizuka, H. Chem. Phys. 1989, 129, 395.
- (16) Shizuka, H.; Hagiwara, H.; Fukushima, M. J. Am. Chem. Soc. 1985, 107, 7816.
 - (17) Shizuka, H.; Fukushima, M. Chem. Phys. Lett. 1983, 101, 598.
 - (18) Shizuka, H. Acc. Chem. Res. 1985, 18, 141 and references therein.

in the mechanism of the HT reaction from the triplet aromatic compounds to ground BP.

This work was carried out to answer the following questions: (1) What is the mechanism of the HT reaction from ³RNH₃^{+*} to ground BP? (2) Is there real exciplex formation in the triplet state? (3) How about the proton effect on the HT reaction? In the present paper, we report the HT reaction from ³RNH₃^{+*} (produced by triplet sensitization of BP) to BP in details by means of laser flash photolysis.

Experimental Section

Materials. 2-Naphthylamine (G. R. grade, Tokyo Kasei) was purified by repeated recrystallizations from ethanol, followed by sublimation. Benzophenone (Wako) was twice recrystallized from an ethanol-water mixture (1:1 v/v). Methanol (Spectrosol, Wako), H₂SO₄ (97% Wako), and HClO₄ (60% Wako) were used without further purification. Deionized water was distilled. Actual acid contents were determined by titration. In most cases, the concentration of 2-naphthylamine (RNH₂) was 3.0×10^{-3} M in methanol containing 10% H₂O by volume. Benzophenone (BP) [3 \times 10⁻³-0.22 M] was used as a triplet sensitizer. H₂SO₄ or HClO₄ [0.015-1.0 M] was used as the proton source, since the counterion (SO₄²⁻ or ClO₄⁻) does not quench the triplet molecules.²⁰ At the acid concentration used, RNH₂ was completely protonated in the ground state ($pK_a = 4.1$), and RNH_3^+ had no absorption at the excitation wavelength (355 nm) in the ground state. All samples in 1- and 10-mm path-length cells were thoroughly degassed by freeze-pump-thaw cycles on a highvacuum line. Spectral data regarding transients were obtained by a fresh sample to avoid excessive exposure to the laser pulse.

Laser Flash Photolysis Instrument. A nanosecond Nd3+:YAG laser system at 355 nm (JK Lasers HY500, pulse width 8 ns, laser power 70 mJ, third harmonic) was used for sample excitation. The monitoring system consisted of a pulse UXL-150D xenon lamp (Hamamatsu), a MC-20N monochromator (Ritsu), and an HTV R928 photomultiplier (Hamamatsu, used for the detection part). The transient signal was recorded with a 100-MHz storage oscilloscope (Iwatsu TS-8123), and data analyses were carried out by use of a microcomputer (NEC, PC-9801 VM2). UV absorption spectra were recorded with Hitachi 200 and Hitachi 139 spectrophotometers. The laser experiments were carried out independently five times, and the reproducible data were carefully obtained. The laser intensity effect at 355 nm on the triplet decay

⁽¹⁹⁾ Gorman, A. A.; Hamblet, I.; Lambert, C.; Potter, R. C. J. Am. Chem. Soc. 1987, 109, 1600.

⁽²⁰⁾ Shizuka, H.; Obuchi, H. J. Phys. Chem. 1982, 86, 1297.

Figure 1. UV absorption spectra of BP, RNH₂, and RNH₃⁺ at longer wavelengths in methanol-water (9:1 v/v). BP: $\lambda_{max} = 332 \text{ nm}$, $\epsilon = 157 \text{ M}^{-1} \text{ cm}^{-1}$. RNH₂: $\lambda_{max} = 345 \text{ nm}$, $\epsilon = 2.3 \times 10^{3} \text{ M}^{-1} \text{ cm}^{-1}$.

due to the triplet-triplet annihilation was checked by use of neutral density filters.

Results and Discussion

Absorption Spectra in the Ground State. Figure 1 shows the absorption spectra of benzophenone (BP), 2-naphthylamine (RNH₂), and 2-naphthylammonium ion (RNH₃⁺) in the ground state, in a methanol-water mixture (9:1 v/v). RNH₂ has a π , π * absorption around 340 nm, but not for RNH₃⁺. Therefore, only BP was excited at 355 nm in the RNH₃+-BP system. In the presence of protons ([H₂SO₄] = 0.015 M), RNH₂ was protonated completely in the ground state, since the pK_a value of RNH₂ is 4.1.21 There was no change in absorption of RNH₃⁺ in a relatively high concentration of acid, e.g., $[H_2SO_4] = 0.5 \text{ M}$. No change in absorption of BP at 350 nm was also obtained with the addition of RNH₃⁺. Therefore, it can be said that there is no interaction between BP and RNH₃⁺ in the ground state. It is obvious that no protonation to BP occurs in the ground state under the concentration of H₂SO₄ used because of its large negative pK₂ value $(-5.7).^{22}$

Generation of ³RNH₃^{+*} by Triplet Energy Transfer. The excited singlet state of BP (1BP*) was produced initially upon laser pulse excitation at 355 nm in the system. The triplet BP (3BP*) was formed via fast intersystem crossing with a picosecond time scale.^{23,24} In the presence of RNH₃+, ³BP* was quenched competitively by energy transfer to RNH₃+ and by hydrogen abstraction from RNH₃+ or solvent molecules. The triplet energy transfer from ³BP* to RNH₃* is possible, since the triplet energies of BP and RNH₃⁺ are known to be 69.2²⁵ and 60.9 kcal/mol, ¹⁷

At first, the triplet energy transfer reaction (i.e., the quenching of ³BP* by RNH₃+) was studied. Figure 2 shows the time-resolved transient absorption spectra of BP $(1.12 \times 10^{-2} \text{ M})$ in the presence of RNH₃⁺ (3.0 × 10⁻³ M) in a methanol-water mixture (9:1 v/v) at 290 K containing 0.015 M H₂SO₄, obtained by nanosecond laser flash photolysis at 355 nm. The transient spectra in the nano-

D. J. Phys. Chem. 1978, 82, 2268.

(25) Murov, S. L. Handbook of Photochemistry; Marcel Dekker: New York, 1973.

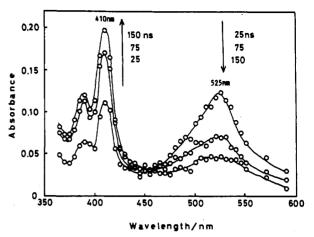


Figure 2. Nanosecond time-resolved transient absorption spectra of BP $(1.12 \times 10^{-2} \text{ M})$ in the presence of RNH₃⁺ $(3.0 \times 10^{-3} \text{ M})$ in methanol-water (9:1 v/v) at 290 K containing 0.015 M H₂SO₄, obtained by laser flash photolysis at 355 nm.

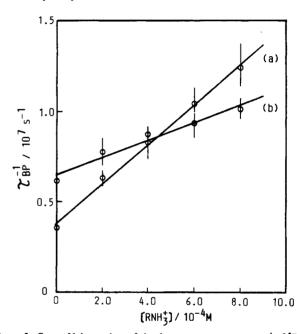


Figure 3. Stern-Volmer plots of the decay rate constants τ_{BP}^{-1} of ³BP* as a function of the concentration of RNH₃⁺ in the presence of 0.015 (a) and 0.5 M (b) H₂SO₄, respectively.

second time scale have two band maxima at 525 and 410 nm. A decrease at the 525-nm band accompanies an increase of the 410-nm peak. Moreover, one can clearly observe the existence of an isosbestic point at 460 nm. The 525-nm peak entirely corresponds to the $T_n \leftarrow T_1$ absorption band of BP.^{26,27} The 410-nm peak with vibrational structures was very similar to the $T_n \leftarrow T_1$ absorption spectrum ($\lambda_{max} = 410 \text{ nm}$) of naphthalene, and it was quenched markedly by dissolved oxygen. The shorter wavelength band is, therefore, ascribable to the $T_n \leftarrow T_1$ absorption spectrum of RNH₃⁺.¹⁷ The spectral change in Figure 2 shows that the triplet 2-naphthylammonium ion (3RNH3+*) is produced by triplet sensitization of BP.

The transient peak at 525 nm of ³BP* decays, with a singleexponential function. The decay rate of ³BP* monitored at 525 nm increases significantly with increasing the concentration of RNH₃⁺. Figure 3 shows the plots of the decay rate constant (τ_{BP}^{-1}) of ${}^{3}BP^{*}$ as a function of the concentration of RNH₃⁺ in the presence of 0.015 (a) and 0.5 M (b) H₂SO₄. The quenching of ³BP* by RNH₃+ was found to follow a Stern-Volmer rela-

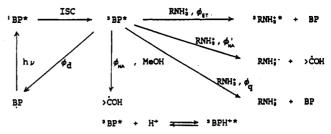
⁽²¹⁾ Förster, T. Z. Elektrochem. Angew. Physik. Chem. 1950, 54, 42, 531.
(22) Bonner, T. G.; Phillips, J. J. Chem. Soc. B 1966, 650.
(23) Anderson, R. W., Jr.; Hochstrasser, R. M.; Lutz, H.; Scott, G. W. J. Chem. Phys. 1974, 61, 2500. Anderson, R. W., Jr.; Hochstrasser, R. W.; Lutz, H.; Scott, G. W. Chem. Phys. Lett. 1978, 28, 153.
(24) Damschen, D. E.; Merritt, C. D.; Perry, D. L.; Scott, G. W.; Telley, D. J. Phys. Chem. 1978, 82, 2368.

⁽²⁶⁾ Land, E. J. Proc. R. Soc. London 1968, A305, 457. (27) Ledger, M. B.; Porter, G. J. Chem. Soc., Faraday Trans. 1 1972, 68,

TABLE I: Experimental Data of the Decay of ³BP* at [BP] = 1.12 × 10⁻² M in MeOH-H₂O (9:1 v/v) at 290 K: Quenching Constant , Decay Rate of ³BP* in the Absence of RNH₃⁺ $(\tau_{BP}^{0})^{-1}$, and Efficiencies of the Triplet Energy Transfer $\phi_{\rm ET}$, the Usual Hydrogen Abstraction from Methanol $(\phi_{\rm HA})$ and from RNH₃⁺ $(\phi_{\rm HA}')$, and the RNH₃⁺-Induced Quenching $(\phi_a')^{a,b}$

	[H ₂ SO ₄]/M	
	0.015	0.5
$k_{\rm o}/{\rm M}^{-1}~{\rm s}^{-1}$	1.1×10^{10}	3.9×10^{9}
$k_{ m q}/{ m M}^{-1}~{ m s}^{-1} \ (au_{ m BP}{}^{ m 0})^{-1}/{ m s}^{-1}$	3.9×10^{6}	7.1×10^{6}
ϕ_{ET^c}	0.41	0.33
ϕ_{HA^c}	0.24	0.14
$\phi_{HA}^{\prime\prime}$	0.14	0.02
$\phi_{q}^{\prime\prime c}$	0.21	0.51

For details, see text. Errors $\pm 10\%$. $c[RNH_3^+] = 3.0 \times 10^{-3} M$.


tionship. The decay rate constant (τ_{BP}^{-1}) of ${}^3BP^*$ can be expressed by the Stern-Volmer equation:28

$$\tau_{\rm BP}^{-1} = (\tau_{\rm BP}^{0})^{-1} + k_{\rm o}[{\rm RNH_3}^+] \tag{1}$$

where τ_{BP}^{0} is the lifetime of ³BP* in the absence of RNH₃+, and its value (ca. 0.26 μ s at [H₂SO₄] = 0.015 M or ca. 0.14 μ s at $[H_2SO_4] = 0.5 \text{ M}$) entirely agrees with that obtained from the intercept of the Stern-Volmer plot in Figure 3. Here, k_0 is the quenching rate constant of ³BP* by RNH₃+. The k_q values were obtained as $1.1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} ([\text{H}_2 \text{SO}_4] = 0.015 \text{ M})$ and $3.9 \times 10^{10} \text{ M}$ $10^9 \text{ M}^{-1} \text{ s}^{-1}$ ([H₂SO₄] = 0.5 M), indicating that the quenching takes place with a diffusion-controlled rate. The values of k_q and $(\tau_{BP}^0)^{-1}$ in the presence of H_2SO_4 are listed in Table I. The $(\tau_{\rm BP}^{\rm 0})^{-1}$ value in the presence of $[{\rm H_2SO_4}] = 0.5$ M is greater than that of $[H_2SO_4] = 0.015 \text{ M}$. The result can be explained by the formation of the protonated triplet benzophenone (³BPH^{+*}), since the pK, value of ³BP* is 0.18 at 293 K.²⁹ However, the value of k_q at $[H_2SO_4] = 0.5$ M is smaller than that at $[H_2SO_4] = 0.015$ M. The viscosity of H₂SO₄ seems to affect the diffusion constant in a solution. Furthermore, the Coulombic interaction between the cations ³BPH^{+*} and RNH₃⁺ may decrease the collision rate. The absorption maximum of ³BPH^{+*} is 20 nm blue-shifted compared to that of ³BP* with a large decrease in absorbance and ³BPH^{+*} can be distinguished from ³BP* by its relatively short lifetime (ca. 13 ns).²⁹

The quenching of ³BP* by RNH₃* may involve the following three processes: energy transfer (ET), hydrogen abstraction (HA) from RNH₃⁺, and deactivation induced by RNH₃⁺. The yields for these processes can be estimated separately by the spectral change in Figure 2. The energy-transfer efficiency ϕ_{ET} can be obtained as the concentration ratio ($[{}^{3}RNH_{3}^{+*}]_{max}/[{}^{3}BP^{*}]_{max}$). For instance, in the case of the system containing 0.015 M H₂SO₄, the concentration of ³BP* produced via fast intersystem crossing (ISC) of ¹BP* by single laser pulse excitation was evaluated as ca. 1.2×10^{-5} M by using $\epsilon = 7800$ M⁻¹ cm⁻¹ at 525 nm in methanol. The concentration of ${}^{3}\text{RNH}_{3}^{+*}$ produced by triplet sensitization of BP was obtained to be 4.9×10^{-6} M by using ϵ = 16 000 M⁻¹ cm⁻¹ at 410 nm in a methanol-water mixture (9:1 v/v).³⁰ The ϕ_{ET} value was obtained as 0.41. As will be shown in the next section, the transients after completion of energy transfer are RNH₂*+ and >COH. The concentrations of >COH and RNH₂*+ produced by the HA reaction of ³BP* from both RNH_3^+ and methanol were obtained to be 4.6×10^{-6} M and 1.7 \times 10⁻⁶ M, respectively, by single laser excitation, using $\epsilon = 3220$ M^{-1} cm⁻¹ at 545 nm for >COH²⁶ and $\epsilon = 6000 \ (\pm 600) \ M^{-1} \ cm^{-1}$ at 510 nm for RNH₂*+30 in a methanol-water mixture (9:1 v/v). The difference $(2.9 \times 10^{-6} \text{ M})$ between the concentrations of >COH and RNH₂*+ corresponds to the >COH concentration produced by the HA reaction of ³BP* from solvent (methanol)

SCHEME I

molecules, since the concentration (1.7 \times 10⁻⁶ M) of RNH₂*+ should be the same as that of >COH produced by the HA reaction of ${}^3BP^*$ from RNH₃⁺. The efficiency ϕ_{HA}' for the HA reaction of ${}^3BP^*$ from RNH₃⁺ to produce >COH plus RNH₂^{*+} was estimated to be 0.14, and the efficiency ϕ_{HA} for the HA reaction of ³BP* from methanol molecules was estimated as 0.24. The φ_d value for the decay from ³BP* to BP (see Scheme I) at [H₂SO₄] = 0.015 M is negligibly small judging from the relatively small value of $(\tau_{BP}^{0})^{-1}$ (3.9 × 10⁶ s⁻¹). At the low concentration of H_2SO_4 (0.015 M), the ϕ_q' value for the other decay processes of ${}^3BP^*$ by RNH_3^+ is therefore estimated to be 0.21 from the equation $\phi_{\rm q}' = 1 - (\phi_{\rm ET} + \phi_{\rm HA} + \phi_{\rm HA}')$. The yields for the decay processes of ${}^{3}{\rm BP}^{*}$ at $[{\rm H}_{2}{\rm SO}_{4}] = 0.015$ and 0.5 M are also listed in Table I. At $[H_2SO_4] = 0.5$ M, the values of ϕ_{HA} and ϕ_{HA}' for the HA processes are very small. At the higher acid concentration $[H_2SO_4] = 0.5 M$, the HA reaction rate decreases significantly since 3BPH+* cannot abstract a hydrogen atom from solvent (methanol) and solute (RNH₃⁺) molecules. The value of ϕ_{ET} (0.33) at [H₂SO₄] = 0.5 M is small compared to that (0.41) at $[H_2SO_4] = 0.015 \text{ M}$. The triplet energy transfer between the cations (3BPH+* and RNH3+) may be reduced by the Coulombic repulsion between them. The lifetime of ³BPH+* is known to be very short (ca. 13 ns).²⁹ That is, the large radiationless decay of ³BPH^{+*} results in the relatively large ϕ_q in contrast to that at lower acid concentration. The total quenching processes of ³BP* are described in Scheme I. It was confirmed that the process of the T-T energy transfer from ³BP* to RNH₃+ is completed within ca. 180 ns under the experimental conditions.

Time-Resolved Transient Absorption Spectra of the Hydrogen Atom Transfer Reaction from ³RNH₃^{+*} to BP. Figure 4 shows the typical time-resolved transient absorption spectra of the hydrogen atom transfer (HT) reaction at the microsecond region in the presence of $[H_2SO_4] = 0.015$ (a) and 0.5 M (b) for the BP $(1.12 \times 10^{-2} \text{ M})$ and RNH³⁺ $(3.0 \times 10^{-3} \text{ M})$ system in methanol-water (9:1 v/v) at 290 K, obtained by nanosecond laser flash photolysis at 355 nm. After the triplet ET reaction from ³BP* to RNH₃+, the HT reaction takes place from ³RNH₃+* to BP, resulting in the formation of both >COH and RNH2*+. The time-resolved spectra in Figure 4a have three peaks at 410, 510, and 545 nm. The shorter wavelength band at 410 nm decreases accompanying an increase of the intensity of the longer wavelength bands at 510 and 545 nm with lapse of time. Moreover, an isosbestic point at 455 nm can be clearly observed in the timeresolved spectra. As mentioned above, the 410-nm band corresponds to the $T_n \leftarrow T_1$ absorption spectrum of RNH₃+, ¹⁷ and the 510- and 545-nm bands correspond to the absorption spectra of RNH₂*+17 and >COH,^{26,27} respectively, as can be seen in Figure 5. These results show that the HT reaction originates from the triplet state of RNH₃⁺ regardless of the concentration of acid used. However, the HT reaction is strongly affected by the acid concentration, as can be seen in Figure 4. First, the decay rate $(\tau_{\rm obsd})^{-1}$ of ${}^3{\rm RNH_3}^{+*}$ in the presence of $[{\rm H_2SO_4}] = 0.015$ and 0.5 M are 2.4×10^6 and 2.0×10^5 s⁻¹, respectively. The formation of both radicals (RNH₂*+ and >COH) is reduced markedly at [H₂SO₄] = 0.5 M. By use of the reference spectra of ³RNH₃^{+*}, RNH₂* and >COH with suitable multiplication factors, the transient spectra in Figure 4 could be reproduced well, indicating that the transients in Figure 4 consist of three species. Therefore, it can be said that there is no triplet naphthylamine (3RNH₂*) under the experimental condition. This result is reasonable, since the pK_a value of ${}^3RNH_3^{+*}$ (3.3)³¹ is large enough to keep the pro-

⁽²⁸⁾ Stern, O.; Volmer, M. Phys. Z. 1919, 20, 183.
(29) (a) Hoshi, M.; Shizuka, H. Bull. Chem. Soc. Jpn. 1986, 59, 2711. (b) Shizuka, H.; Kimura, E. Can. J. Chem. 1984, 62, 2041.
(30) RNH₂⁺⁺ and >COH are produced by hydrogen atom transfer from ³RNH₃⁺⁺ to BP with a 1:1 ratio. By use of the known ε value²⁶ of >COH at 545 nm, the ε value at 510 nm for RNH₂⁺⁺ can be readily determined.

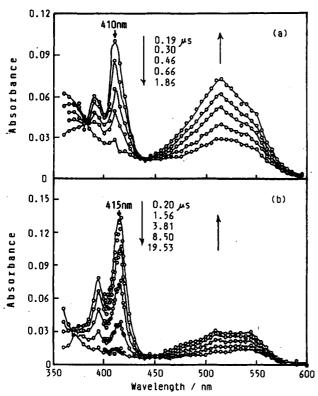


Figure 4. Time-resolved transient absorption spectra of the $[RNH_3^+] = 3.0 \times 10^{-3} M$ and $[BP] = 1.12 \times 10^{-2} M$ system on the microsecond time scale in the presence of 0.015 (a) and 0.5 M (b) H_2SO_4 , obtained by laser flash photolysis at 355 nm.

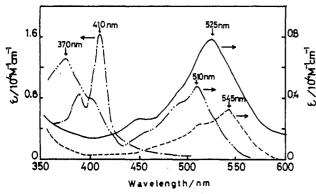


Figure 5. Reference absorption spectra of ³RNH₃^{+*} (410 nm), ³BP* (525 nm), RNH₂^{+*} (510 nm), and >COH (545 nm). See text.

tonated structure in the triplet state at $[H_2SO_4] \ge 0.015$ M. The efficiency of the HT reaction from ${}^3RNH_3^{+*}$ to BP can be evaluated easily as the product formation ratio $([RNH_2^{++}]_{HT}/[{}^3RNH_3^{+*}]_{ET})$ or $[>\dot{C}OH]_{HT}/[{}^3RNH_3^{+*}]_{ET})$, since the concentration of RNH_2^{++} produced by the HT reaction from ${}^3RNH_3^{+*}$ to BP should be the same as that of $>\dot{C}OH$. The efficiency of the HT reaction in the presence of H_2SO_4 (0.015 or 0.5 M) was obtained at 0.95 or 0.31, respectively. It is obvious that the efficiency of the HT reaction is affected considerably by addition of protons. These results are opposite to the HT reaction from triplet 1-naphthol (${}^3ROH^*$) to BP, since the HT reaction is enhanced by addition of protons in the ROH-BP system. 32 Accordingly, the HT reaction in the present RNH_3^+ BP system was named as the proton-controlled hydrogen atom transfer reaction in contrast to the proton-enhanced hydrogen atom transfer reaction in the ROH-BP system.

Secondly, the $T_n \leftarrow T_1$ absorption spectrum of RNH₃⁺ (λ_{max} = 410 nm) at [H₂SO₄] = 0.5 M resembles that at [H₂SO₄] =

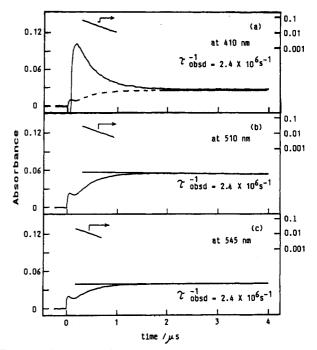


Figure 6. Time traces of the transient absorption species monitored at the corresponding peaks $({}^{3}RNH_{3}^{++}$ (a), RNH_{2}^{++} (b), and >COH (c)) in the presence of $[H_{2}SQ_{4}] = 0.015$ M, obtained by laser flash photolysis at 355 nm in the RNH_{3}^{++} (3.0 \times 10⁻³ M) – BP (1.12 \times 10⁻² M) system in MeOH- $H_{2}O$ (9:1) at 290 K.

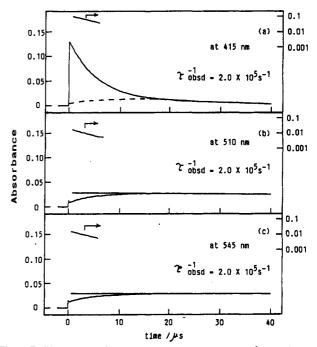


Figure 7. Time traces of the transient absorption species $({}^{3}RNH_{3}^{++}$ (a), RNH_{2}^{++} (b), and >COH (c)) in the presence of $[H_{2}SO_{4}] = 0.5$ M, obtained by laser flash photolysis at 355 nm in the RNH₃⁺⁺ (3.0 × 10⁻³ M) – BP (1.12 × 10⁻² M) system in MeOH-H₂O (9:1) at 290 K.

0.015 M. However, the transient peak ($\lambda_{max} = 415$ nm) of 3 RNH₃^{+*} at the higher acid concentration 0.5 M H₂SO₄ is slightly shifted to the red by 5 nm, and its vibrational structures become rather sharp.

Lifetimes of the Transient Species. Figures 6 and 7 show the typical time traces of the transient absorption species obtained by laser flash photolysis at 355 nm in the RNH₃⁺-BP system ([BP] = 1.12×10^{-2} M and [RNH₃⁺] = 3.0×10^{-3} M) in the presence of [H₂SO₄] = 0.015 M (Figure 6) and [H₂SO₄] = 0.5 M (Figure 7) in methanol-water (9:1 v/v) at 290 K, monitored at their peaks (3 RNH₃^{+*}, RNH₂^{*+}, and >COH) as shown in Figure 4.

⁽³¹⁾ Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem. 1976, 12, 131.
(32) Hoshino, M.; Shizuka, H. In Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C.

For determination of the lifetime of the transient species, especially for ³RNH₃^{+*}, there is a problem, since the rise part of both radical components (RNH2°+ and >COH) generated by the HT reaction is involved considerably in the decay absorption of ³RNH₃^{+*} (see Figure 5). So far, the decay rate constant of the transient has been calculated simply by subtraction of the rise part corresponding to the radical absorption (the extrapolation method). However, this method does not accurately reflect the rise part of radicals. Accordingly, the following method was used to correct the rise part of radicals to the decay rate of ³RNH₃^{+*}. The observed absorbance (ODobad) at 410 nm (the absorption maximum of ³RNH₃^{+*}) can be written as

$$OD_{obsd}(t) = OD_{RNH_3}^+(t) + OD_{RNH_2}^+(t) + OD_{COH}^-(t)$$
 (2)

where $OD_{3RNH_3}+(t)$, $OD_{RNH_2}+(t)$, and $OD_{COH}(t)$ denote the optical densities (OD) of actual concentrations of the corresponding species as a function of the delay time (t). The net absorbance OD_{3RNH,+}(t) of ³RNH₃+* at 410 nm can be expressed

 $OD_{3RNH_3}(t) =$

$$OD_{obsd}(t) - \frac{\epsilon_{RNH_2*} + (410) + \epsilon_{>COH}(410)}{\epsilon_{RNH_2*} + (510) + \epsilon_{>COH}(510)} OD_{obsd,510}(t)$$
(3)

where ϵ_{RNH_2} , (410), $\epsilon_{\text{>COH}}$ (410), ϵ_{RNH_2} , (510), and $\epsilon_{\text{>COH}}$ (510) denote the molar extinction coefficients of radicals (RNH₂⁺⁺ and >COH) at the corresponding wavelengths written in parentheses. The value of $\{\epsilon_{RNH_2} + (410) + \epsilon_{COH}(410)\}/\{\epsilon_{RNH_2} + (510) + \epsilon_{COH}(410)\}$ $\epsilon_{\text{>COH}}(510)$ was equal to 0.50 in the system. Here, $OD_{\text{obsd},510}(t)$ is the observed absorbance of RNH2°+ as a function of the delay time t. Therefore, the decay rate constant $(\tau_{obsd})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ can be expressed as

$$(\tau_{\text{obsd}})^{-1}t = -\ln \text{OD}_{3_{\text{RNH}_3}^{-1}}(t) + \text{constant}$$
 (4)

The kinetic analysis for the decay of ³RNH₃+* was carried out by using the above method. On the other hand, the rise rate for the radical formation can be obtained by the extrapolation method, as shown in Figures 6 and 7.

With these methods, the decay rate $(\tau_{obed})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ was obtained to be $2.6 \times 10^6 \,\mathrm{s}^{-1}$ from the slope in Figure 6a, and the rise rates $(\tau_{obsd})^{-1}$ of both the radicals RNH₂⁺⁺ and >COH) were 2.6 × 10⁶ s⁻¹ from the slopes in Figure 6b,c in the presence of [H₂SO₄] = 0.015 M. In the presence of [H₂SO₄] = 0.5 M, the decay rate $(\tau_{obsd})^{-1}$ was obtained as 2.0×10^5 s⁻¹ from the slope in Figure 7a, and the rise rate constant $(\tau_{obsd})^{-1}$ of the radicals was 2.0×10^5 s⁻¹ from the slopes in Figure 7b,c. The results show that both RNH₂*+ ($\lambda_{max} = 510 \text{ nm}$) and >COH ($\lambda_{max} = 545 \text{ nm}$) radicals are produced from 3RNH3++.

Mechanism of the Hydrogen Atom Transfer Reaction in the RNH₃+-BP System. A bimolecular reaction can be treated as a pseudo-first-order reaction when the concentration of one of the reacting species is much greater than that of the other. In the HT reaction from ³RNH₃^{+*} to BP, the concentration of BP [3 \times 10⁻³-0.22 M] is much greater than that of ³RNH₃^{+*} (\sim 10⁻⁵ M). Hence, this reaction is to be the case:

$$^{3}RNH_{3}^{+*} + BP \xrightarrow{k_{HT}} RNH_{2}^{*+} + > COH$$
 (5)

If the HT reaction between ${}^{3}RNH_{3}^{+*}$ and BP to produce the radicals (RNH₂*+ and >COH) occurred by collision in nature, the Stern-Volmer plot of the decay rate $(\tau_{obsd})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ vs [BP] would be a straight line according to

$$(\tau_{\text{obsd}})^{-1} = \tau_0^{-1} + k_q[BP]$$
 $k_q = k_{\text{HT}} + k_q'$ (6)

where τ_0^{-1} denotes the decay rate constant of ${}^3RNH_3^{+*}$ in the absence of BP, and k_q' is the quenching rate constant of ${}^3RNH_3^{+*}$ induced by BP.

Figure 8 shows the plots of the decay rate $(\tau_{obsd})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ as a function of the concentration of BP in the presence of H₂SO₄. The experiments were carried out independently more than three times. The value of $(\tau_{obsd})^{-1}$ increases with an increase in the BP concentration, and it decreases with an increase in the H₂SO₄ concentration. However, there is a leveling off at higher BP

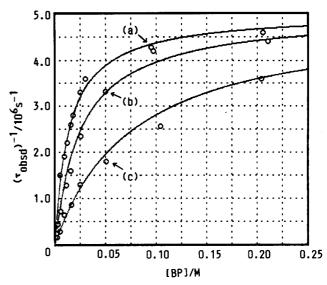
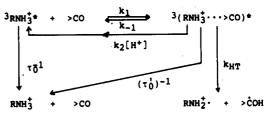



Figure 8. Plots of the decay rate $(\tau_{obsd})^{-1}$ of ${}^{3}RNH_{3}^{+*}$ as a function of [BP] monitored at 410 nm in the presence of 0.015 (a), 0.05 (b), and 0.2 M H₂SO₄ (c). The solid curve denotes the calculated one from eq 7, which agrees with the experimental data. For details, see text.

SCHEME II

where
$$(\tau^i)^{-1} = k_{HT} + (\tau_0^i)^{-1}$$
 and $K_1 = k_1/k_{-1}$

concentrations, especially at lower H₂SO₄ concentrations (≤0.05 M). This result cannot be interpreted in terms of a simple quenching mechanism of the triplet RNH3+ by BP as shown in eq 6.

No formation of the ground-state complex between RNH₃⁺ and BP is concluded judging from the triplet energy transfer profile from ³BP* to RNH₃+ under the experimental condition. The leveling off, therefore, is suggested to be due to an equilibrium of the complex between ³RNH₃^{+*} and BP. The decay of the T-T absorption of RNH₃⁺ in the presence of BP (3 × 10⁻³-0.22 M) follows the first-order kinetics beyond 0.15 μ s after a laser pulse. It is, therefore, likely that the equilibrium in the excited state is completed within 0.18 μ s after the pulse. The HT reaction may take place via the triplet exciplex ${}^3(RNH_3^+ - CO)^*$ but not via a purely collisional reaction.

The experimental results can be accounted for by Scheme II, where >CO denotes BP, ³(RNH₃+...>CO)* is the 1:1 triplet complex between ${}^{3}RNH_{3}^{+*}$ and BP, k_{1} and k_{-1} are the rate constants for the formation and decomposition of the triplet exciplex respectively, $(\tau_0)^{-1}$ is the decay rate of free ${}^3RNH_3^{+*}$, $(\tau_0')^{-1}$ is the decay rate of ${}^3(RNH_3^+ \dots > CO)^*$ without $k_{\rm HT}$, and $k_{\rm HT}$ is the rate constant for the HT reaction. Here, k_2 denotes the decomposition rate constant of the triplet complex by protonation, resulting in the reproduction of free ³RNH₃^{+*} plus >CO. The $T_n \leftarrow T_1$ transient absorption spectrum of ${}^3(RNH_3^+ \cdots > CO)^*$ seems to be similar to that of free ³RNH₃+*, suggesting that the triplet complex is a locally excited triplet state. In other words, ³(RNH₃+...>CO)* presumably has a sandwich structure with a very weak charge-transfer interaction. The complex may be protonated at higher acid concentrations to give the protonated triplet complex ³(RNH₃+····>C+OH)*. Subsequently, the protonated complex may decompose rapidly into free ³RNH₃^{+*} + >CO + H⁺, since the dication complex should be very unstable due to the Coulombic repulsion. The rate for the HT reaction is reduced considerably with an increase in the acid concentration.

K_1/M^{-1}	$(k_2'/k_{-1})/M^{-1}$	$\tau_0^{-1}/10^4 \text{ s}^{-1}$	$(\tau')^{-1b}/10^6 \text{ s}^{-1}$
110 (±10)	40 (±5)	~1	5 (±0.5)

^a For details, see Scheme II and eq 7. ${}^b(\tau')^{-1} = k_{\rm HT} + (\tau_0')^{-1} \simeq k_{\rm HT}$ at lower acid concentration (e.g., [H₂SO₄] = 0.015 M).

As a result, the value of $(\tau_{obsd})^{-1}$ becomes significantly small at higher acid concentrations. It is noteworthy that the protonation of the ground BP is impossible under the experimental condition, because the ground-state pK_a value of BP is negatively large $(-5.7).^{22}$ Therefore, the ground-state protonation of BP is excluded.

On the assumption that the equilibrium holds in the excited state as shown in Scheme II, the decay rate $(\tau_{obsd})^{-1}$ as a function of [BP] at different H₂SO₄ concentrations can be expressed as follows:

$$(\tau_{\text{obed}})^{-1} = \frac{\tau_0^{-1} + K_1[\text{BP}](\tau')^{-1}(1 + k_2'(k_{-1})^{-1}[\text{H}_2\text{SO}_4])^{-1}}{1 + K_1[\text{BP}](1 + k_2'(k_{-1})^{-1}[\text{H}_2\text{SO}_4])^{-1}}$$
(7)

where $(\tau')^{-1} = k_{\rm HT} + (\tau_0')^{-1}$ and $K_1 = k_1/k_{-1}$. Actually, we should use the proton concentration in eq 7 instead of $[H_2SO_4]$. However, we used the concentration of H₂SO₄ in the equation because the proton activity in the mixed solvent (MeOH:H₂O 9:1 v/v) is unknown. Therefore, we used $k_2'[H_2SO_4]$ instead of $k_2[H^+]$. The value of τ_0^{-1} was obtained as $\sim 1.0 \times 10^4$ s⁻¹ (i.e., τ_0 = ca. 100 μs) in the absence of BP upon direct excitation of RNH₃⁺ at 266 nm at 290 K, though the quantum yield for the ${}^3RNH_3^{+*}$ formation was very low. The τ_0^{-1} value is, therefore, negligibly small in the present system. The parameters K_1 , k_2'/k_{-1} , and $(\tau')^{-1}$ in eq 7 can be evaluated by best fitting both the plots of $(\tau_{obsd})^{-1}$ vs [BP] (Figure 8) at 0.015, 0.05, and 0.2 M H₂SO₄. The calculated values for $(\tau_{obsd})^{-1}$ are shown by solid lines in Figure 8, which fairly fit the experimental results. The values of K_1 , k_2'/k_{-1} , and $(\tau')^{-1}$ were determined as 110 (±10) M⁻¹, 40 (±5) M⁻¹, and $5.0 (\pm 0.5) \times 10^6 \,\mathrm{s}^{-1}$, respectively. These data are listed in Table II. The intracomplex HT reaction in the triplet exciplex to give RNH₂^{•+} plus >COH at low acid concentrations (e.g., 0.015 M H₂SO₄) takes place very effectively (the efficiency is 0.95). This result suggests that the deactivation rate of the triplet exciplex due to intersystem crossing to the ground state is considerably slow compared to $k_{\rm HT}$. That is, the $k_{\rm HT}$ value is evaluated to be ca. $5 \times 10^6 \text{ s}^{-1}$.

We can estimate the fraction α of ${}^3(RNH_3^+ \dots > CO)^{\bullet}$ in the excited-state equilibrium using the following equation:

$$\alpha = \frac{K_1[BP](1 + k_2'(k_{-1})^{-1}[H_2SO_4])^{-1}}{1 + K_1[BP](1 + k_2'(k_{-1})^{-1}[H_2SO_4])^{-1}}$$
(8)

For example, the α values of the triplet complex at 0.015 and 0.5 M H₂SO₄ at [BP] = 1.12×10^{-2} M are obtained as 0.44 and 0.055, respectively. This result indicates that the triplet complex is decomposed into free 3 RNH₃+* plus BP at higher acid concentrations, resulting in a drastic decrease of $(\tau_{obsd})^{-1}$ (i.e., a significant decrease of the apparent HT rate).

Remarkable Proton Effect on the Hydrogen Atom Transfer Reaction in the 3 RNH $_{3}^{+*}$ -BP System. The proton effect on the HT reaction in the 3 RNH $_{3}^{+*}$ -BP system has been studied in various H $_{2}$ SO $_{4}$ concentrations (0.015-1 M). Figure 9 shows the plot of the decay rate (τ_{obsd})⁻¹ monitored at 415 nm as a function of H $_{2}$ SO $_{4}$ in the presence of BP ([BP] = 1.12 × 10⁻² M) at 290 K.

The value of $(\tau_{obsd})^{-1}$ decreases drastically with increasing the concentrations of H_2SO_4 , and it becomes almost constant at the H_2SO_4 concentration higher than 0.5 M. The dependence of $(\tau_{obsd})^{-1}$ on the acid concentration can be explained by Scheme II. This observation is in striking contrast to the proton effect on the HT reaction of the ROH-BP system in which the value of $(\tau_{obsd})^{-1}$ of ${}^3ROH^*$ increases with an increase of the concentration of 4SO_4 . The values of $(\tau_{obsd})^{-1}$ vs $[H_2SO_4]$ calculated

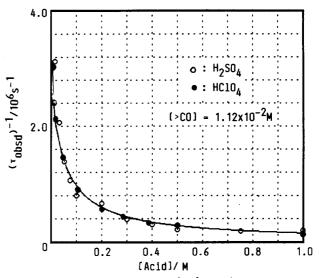


Figure 9. Plots of the decay rate $(\tau_{\rm obsd})^{-1}$ of ${}^3{\rm RNH_3^{++}}$ monitored at 410 nm as a function of various concentration of acid [H₂SO₄ (O), HClO₄ (\bullet)] in the presence of [BP] = 1.12×10^{-2} M. The solid curve denotes that calculated by using eq 7, which agrees with the experimental data. For details, see text.

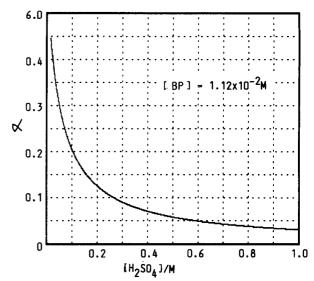


Figure 10. Dependence of the fraction α of ${}^{3}(RNH_{3}^{+}...>CO)^{*}$ on the $H_{2}SO_{4}$ concentration.

by eq 7 ($K_1 = 110 \text{ M}^{-1}$, $k_2'/k_{-1} = 40 \text{ M}^{-1}$, $\tau_0^{-1} = 1 \times 10^4 \text{ s}^{-1}$, and (τ')⁻¹ = 5 × 10⁶ s⁻¹) are depicted by the solid line in Figure 9, which are in good agreement with the experimental data. The fractions α of the triplet complex at [BP] = 1.12 × 10⁻² M as a function of [H₂SO₄] are calculated by eq 8, which are shown in Figure 10. The α value decreases significantly with increasing the H₂SO₄ concentration. The equilibrium ${}^3RNH_3^{+*} + > CO \Rightarrow {}^3(RNH_3^{+**} - > CO)^*$ is apparently shifted to the free ${}^3RNH_3^{+*} + > CO$ side by the proton effect as described above. In fact, the transient spectrum at 0.2 μ s after a pulse is altered slightly by the concentration of H₂SO₄: the vibrational structures of the absorption band around 410–415 nm become narrow on going from low to high concentration of H₂SO₄. This result suggests that the absorption band of ${}^3(RNH_3^{+**} - > CO)^*$ is broad compared to that of free ${}^3RNH_3^{+*}$.

Hydrogen Atom Transfer Reaction in the 3 RNH₃^{+*}-BP System under Various Conditions. The HT reaction has been studied with HClO₄ as a proton source. The experiments were carried out under the same condition as those in the case of H₂SO₄ ([3 RNH₃⁺] = 3.0 × 10⁻³ M, [BP] = 1.12 × 10⁻² M in MeOH-H₂O 9:1 at 290 K). Figure 9 shows the plots of the decay rates $(\tau_{obsd})^{-1}$ of 3 RNH₃^{+*} as a function of the concentration of HClO₄ at [BP] = 1.12 × 10⁻² M at 290 K, indicating that the effect of HClO₄

on $(\tau_{\rm obsd})^{-1}$ is very similar to that of $\rm H_2SO_4$. The decay rate $(\tau_{\rm obsd})^{-1}$ obtained experimentally in the $\rm HClO_4$ system agrees with the fitting curve using the parameters obtained in the case of H_2SO_4 ($K_1 = 110 \text{ M}^{-1}$, $k_2'/k_{-1} = 40 \text{ M}^{-1}$, $\tau_0^{-1} = 1 \times 10^4 \text{ s}^{-1}$, and $(\tau')^{-1} = 5 \times 10^6 \text{ s}^{-1}$). Thus, the parameters obtained in the presence of H₂SO₄ can be used for the system in the presence of HClO₄. H₂SO₄ is known to behave almost as a monoprotonic acid even in dilute aqueous solution.33 Therefore, H₂SO₄ acts as a monovalence acid in the mixed solvent (9:1) (MeOH-H₂O).

In the above section, it is concluded that the HT reaction depends significantly on the acid concentration as well as [BP]. It is also important to study the effect of the counterion SO₄²on the HT reaction. Na₂SO₄ was used as a counteranion source, since neither Na+ nor SO42- quenches the triplet molecules.20 To examine salt effects on the HT reaction, Na₂SO₄ (0.5 M) was added to the typical system ([RNH₃⁺] = 3.0×10^{-3} M, [BP] = 1.12×10^{-2} M, and $[H_2SO_4] = 0.015$ M in 9:1 MeOH- H_2O at 290 K). For the above system, both the transient spectra and their lifetimes were the same as those in the absence of the salt, showing that there was no salt effect on the HT reaction under the experimental condition.

Intracomplex Hydrogen Atom Transfer. In a previous paper, 16 we reported that the triplet naphthol, 3ROH*, reacts with BP to yield RO and >COH. The rate constant, k_T , for the decay of ³ROH* increases with an increase in the concentration of BP. At high concentrations of BP, the Stern-Volmer plot, k_T vs [BP], exhibits slight convex curvature, suggesting that ³ROH* and BP form a weak charge-transfer complex: the equilibrium constant is obtained as 16.7 M⁻¹. Later, Gorman and co-workers¹⁹ claimed that the plot makes a strictly straight line in the range [BP] < $3 \times 10^{-2} M$.

The present work has shown that, in contrast to the case of the ROH-BP system, the rate constant for the decay of ³RNH₃^{+*} levels off at high concentrations of BP, clearly indicating that ³RNH₃^{+*} and BP form the triplet exciplex with the equilibrium constant 110 M⁻¹. The absorption spectrum of the exciplex is found to be (1) similar to that of free ³RNH₃^{+*} and (2) rather broad compared to that of free ³RNH₃+*. Presumably, the charge-transfer interaction between ³RNH₃^{+*} and BP is weak. When $[H_2SO_4] = 0$, eq 7 is transformed to

$$(\tau_{\text{obad}})^{-1} = (\tau_0^{-1} + K_1[BP](\tau')^{-1})(1 + K_1[BP])^{-1}$$
 (9)

This is the same equation that the decay rate constant in the ROH-BP system is interpreted. 16 On the basis of eq 9, it is concluded that the plot of $(\tau_{obsd})^{-1}$ vs [BP] gives a straight line only when $K_1[BP] \ll 1$, while the plot tends to show convex curvature with an increase in the value of $K_1[BP]$. As mentioned above, the equilibrium constant K_1 in the RNH₃+-BP system is

(33) Cox, R. A.; Yates, K. J. Am. Chem. Soc. 1978, 100, 3861.

1 order of magnitude greater than that in the ROH-BP system. Thus, the Stern-Volmer plot in the RNH₃⁺-BP system becomes significantly convex compared to that in the ROH-BP system.

In an earlier study on proton-assisted electron transfer, 32,34 it has been revealed that the triplet methoxynaphthalene, ³ROMe*, reacts with BP in the presence of protons to yield methoxy-naphthalene cation radical, ROMe*+, plus >COH. This result, in agreement with the present study, is interpreted by assuming that ³ROMe* and BP form a triplet exciplex. ³² The lifetime of the triplet exciplex is found to be a little shorter than that of free ³ROMe*, probably owing to the weak charge-transfer interaction. On the other hand, the triplet exciplexes ³(ROH···>CO)* and ³(RNH₃+...>CO)* have their lifetimes markedly shorter than those of free ³ROH* and ³RNH₃** because of the fast intracomplex hydrogen atom transfer reaction that principally dominates their lifetimes.

Summary

The triplet 2-naphthylammonium ion (3RNH₃+*) is produced in the nanosecond time scale by the triplet energy transfer from triplet benzophenone (³BP*) to RNH₃+ with efficiencies of 0.41 $([H_2SO_4] = 0.015 \text{ M}) \text{ and } 0.33 ([H_2SO_4] = 0.5 \text{ M}) \text{ at } [^3RNH_3^+]$ = 3.0×10^{-3} M and at [BP] = 1.12×10^{-2} M, competing with the hydrogen abstraction of ³BP* from solvent (methanol) or RNH₃⁺ molecules as shown in Scheme I.

In the microsecond time scale, the hydrogen atom transfer (HT) reaction from ³RNH₃^{+*} to BP occurs effectively to yield the 2-naphthylamine cation radical (RNH2°+) plus the benzophenone ketyl radical (>COH). At a lower acid concentration (0.015 M), the efficiency for HT from ³RNH₃+* to BP is evaluated as 0.95.

The mechanism of the HT reaction can be accounted for by the intracomplex HT reaction of the triplet exciplex ${}^{3}(RNH_{3}^{+} - CO)^{*}$ as shown in Scheme II. The kinetic parameters in Scheme II are determined to be $K_1 = 110 \text{ M}^{-1}$, $k_2'/k_{-1} = 40 \text{ M}^{-1}$, $\tau_0^{-1} = 1 \times 10^4 \text{ s}^{-1}$, and $(\tau')^{-1} = 5 \times 10^6 \text{ s}^{-1}$. The reaction rate for the intracomplex HT process in ³(RNH₃+...>CO)* is obtained as ca. 5×10^6 s⁻¹.

The HT reaction decreases drastically with an increase of the acid (H₂SO₄ or HClO₄) concentration. At higher acid concentrations the triplet complex is decomposed by protonation to give free ³RNH₃+* plus BP.

Acknowledgment. This work was supported by a Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture of Japan (No. 01840016). We are very grateful to Professor P. J. Wagner of Michigan State University for useful discussions.

⁽³⁴⁾ Shizuka, H.; Hagiwara, H.; Satoh, H.; Fukushima, M. J. Chem. Soc., Chem. Commun. 1985, 1455.