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SUMMARY

Transesterification of fatty acids yields the essential
component of biodiesel, but current processes are
cost-prohibitive and generate waste. Recent efforts
make use of biocatalysts that are effective in divert-
ing products from primary metabolism to yield fatty
acid methyl esters in bacteria. These biotransforma-
tions require the fatty acid O-methyltransferase
(FAMT) from Mycobacterium marinum (MmFAMT).
Although this activity was first reported in the
literature in 1970, the FAMTs have yet to be biochem-
ically characterized. Here, we describe several
crystal structures of MmFAMT, which highlight an
unexpected structural conservation with methyl-
transferases that are involved in plant natural
product metabolism. The determinants for ligand
recognition are analyzed by kinetic analysis of struc-
ture-based active-site variants. These studies reveal
how an architectural fold employed in plant natural
product biosynthesis is used in bacterial fatty acid
O-methylation.

INTRODUCTION

The increasing demand for energy, coupled with the need for en-

ergy independence and security, have been the main forces

driving the growing interest in the use of biofuels as a potential

sustainable energy resource. The Energy Independence and Se-

curity Act of 2007 mandates increased production of biofuels

with the aim of reducing the national dependence on unstable

foreign suppliers, as well as reducing pollutants produced by

the consumption of fossil fuels (USGovernment, 2007). Although

biofuels hold great promise, the current methodologies used for

their production require large quantities of water, fertilizers, and

pesticides, rendering biofuels less environmentally friendly and

sustainable than desired (Naik et al., 2010).

In recent years, biodiesel has emerged as a viable resource for

utilization in green energy production. In addition to favorable

properties such as biodegradability and low toxicity, biodiesel
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has properties similar to those of petro-diesel, and can be

used as a motor fuel without major engine modifications (Demi-

rbasx, 2002). It is a mixture of long-chain fatty acid alkyl esters

(FAAEs), producedmainly by the transesterification of fatty acids

derived from vegetable oils and animal fats (Atadashi et al.,

2010). Many biodiesel precursors are derived from triglycerides,

which are esters of three equivalents of fatty acids with one

equivalent of glycerol. Triglycerides can undergo transesterifica-

tion with an alcohol in the presence of a catalyst to yield FAAEs

and glycerol as final products. However, this process is expen-

sive and generates waste, negating the financial and environ-

mental benefits of using biodiesel (Leung et al., 2010).

With the goal of formulating less energy-intensive and more

environment-friendly methods for biodiesel production, several

laboratories have engineered microorganisms for the overpro-

duction of fatty acid precursors (Kung et al., 2012; Steen et al.,

2010; Li et al., 2008; Nawabi et al., 2011). More recently, Escher-

ichia coli has been engineered to directly produce fatty acid

methyl esters (FAMEs) and 3-hydroxy fatty acid methyl esters

(3-OH FAMEs) by using a fatty acid O-methyltransferase

(FAMT) fromMycobacteriummarinum (MmFAMT) for transester-

ification in situ (Figure 1A) (Nawabi et al., 2011). Although the

yield of FAMEs produced by this pathway was lower than the

maximal FAAE yields reported (Steen et al., 2010; Nawabi

et al., 2011), the use of FAMT holds promise for in vivo biodiesel

production.

The fatty acidO-methyltransferases are S-adenosylmethionine

(SAM)-dependent enzymes that catalyze the transfer of a methyl

group to the carboxyl group of a fatty acid acceptor (Struck

et al., 2012). Canonical SAM-dependent methyltransferases

catalyze alkylation on heteroatoms via an SN2-type nucleophilic

substitution mechanism (Blumenthal et al., 1999). Mycobacteria

specifically possess a large number of SAM-dependent methyl-

transferases that catalyze the modification of mycolic acids, the

very long fatty acids found in mycobacterial cell walls (Barry

et al., 1998). These enzymes can be broadly classifiedwith regard

to the identity of the methyl acceptor, and include the cyclopro-

pane fatty acid synthases (which catalyze C-methylation of a cis

double bond) (Huang et al., 2002), and the O-methyltransferases

that catalyze methylation on the hydroxyl moiety of phthiocerol,

phenolphthiocerol, or ketomycolate (Yuan et al., 1998; Yuan and

Barry, 1996). There are three cyclopropane fatty acid synthases

with different regiospecificities; CmaA1 catalyzes the installation
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Figure 1. Small Molecule Methyltransferase Reactions and

Michaelis-Menten Kinetics
(A) Reactions catalyzed by the fatty acid O-methyltransferase (FAMT) and two

of its structural homologs from the SABATH family (7-MXMT, 7-methylxan-

thine N-methyltransferase; SAMT, salicylic acid O-methyltransferase). Free

fatty acids can be released by the action of a thioesterase (TES) on acyl-ACP

(acyl carrier protein).

(B) Michaelis-Menten kinetic plots for the wild-type MmFAMT for octanoate

(C8), decanoate (C10), 3-hydroxyoctanoate (3-OH-C8), and 3-hydrox-

ydecanoate (3-OH-C10). All measurements were conducted in triplicate and

the mean average value for each are shown. Error bars indicate the standard

deviations of each data point.
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of the distal cyclopropane ring on a-mycolic acid when overex-

pressed (Yuan et al., 1995; Glickman, 2003), PcaA installs that

proximal cyclopropane ring in a-meroacid (Glickman et al.,

2000), and CmaA2 catalyzes the cis-cyclopropane synthesis in

methoxymycolates (Yuan and Barry, 1996). Additional examples

include MmaA4 that introduces a methyl branch, together with

an adjacent hydroxyl group, during the formation of both keto-

and methoxymycolates (Boissier et al., 2006). In contrast to these

other SAM-dependent enzymes, little is known about FAMTs (Na-

wabi et al., 2011; Akamatsu and Law, 1970; Orpiszewski et al.,
2 Chemistry & Biology 22, 1–11, November 19, 2015 ª2015 Elsevier
1991; Safayhi et al., 1991; Sastry et al., 1994). Although they

were first discovered in mycobacteria in 1970 (Akamatsu and

Law, 1970), there are very few published studies about this class

of methyltransferases (Nawabi et al., 2011; Akamatsu and Law,

1970;Safayhi et al., 1991), and their physiological role inmycobac-

teria has yet to be elucidated.

The identification of the mycobacterial FAMTs was facilitated

by the sequence analysis of mycobacterial proteins, and

sequence-based structural alignments suggested that they

contain a Rossmann-like fold found in class I methyltransferases

(Liscombe et al., 2012). The primary sequences of the mycobac-

terial enzymesalsosuggestweak, but notable, similarities toplant

natural product methyltransferases, such as dimethylxanthine

methyltransferase (PDB: 2EFJ) (McCarthy and McCarthy, 2007)

and salicylate methyltransferase (PDB: 1M6E) (Zubieta et al.,

2003), as well as other members of a recently characterized

protein family classified as the SABATH methyltransferase

(Pfam03492 [D’Auria et al., 2003]; sonamed for thefirst character-

izedmembers of this fold class) (Figure 1A). However, these plant

enzymes are not known to catalyze methylation of fatty acid sub-

strates, and the sequence identity between the mycobacterial

enzymes and the plant O-methyltransferases is less than 25%.

To understand the basis for this biotechnologically relevant

enzyme, we carried out biochemical and biophysical character-

ization of the MmFAMT that has been previously utilized for the

in vivo production of biodiesel (Nawabi et al., 2011). Cocrystal

structures of the enzymewith a variety of bound substrates allow

for the identification of features that bestow specificity to fatty

acid substrates. Kinetic characterization of active-site variants,

as deduced from the structural data, facilitates the assignment

of roles for various residues and the proposal for a reaction

mechanism consistent with the data. These studies should pro-

vide a framework for future engineering experiments aimed at

adapting FAMTs for in vivo high-yield production of biodiesel

from fatty acid precursors.

RESULTS AND DISCUSSION

Kinetic Characterization of M. marinum FAMT
The kinetic parameters for wild-type MmFAMT for a panel of

fatty acids and 3-hydroxy fatty acids were determined using a

coupled assay (Dorgan et al., 2006; Wooderchak et al., 2008)

that monitored SAM turnover. In this assay, S-adenosylhomo-

cysteine (SAH), the product of SAM, is hydrolyzed by an SAH

nucleosidase (the Pfs SAH nucleosidase has a catalytic effi-

ciency of 11.6 3 106 M�1 s�1 [Choi-Rhee and Cronan, 2005],

which is greater than that of MmFAMT) to S-ribosylhomocys-

teine and adenine. The latter is subsequently deaminated by

an adenine deaminase, resulting in a decrease in absorbance

at 265 nm (Dε z 6,700 M�1 cm�1), and allowing for continuous

monitoring of the reaction (Dorgan et al., 2006). The catalytic

efficiency of MmFAMT for free fatty acids was found to in-

crease with chain length (the kcat/KM value for C8 octanoic

acid is 1.49 3 103 M�1 s�1, and for C10 decanoic acid is

2.973 104M�1 s�1) (Table 1 and Figure 1B). The 3-hydroxy com-

pounds were turned over less efficiently, with kcat/KM values that

are roughly an order of magnitude lower than for the correspond-

ing fatty acid. The kinetic parameters forMmFAMT reported here

differ from values determined previously via a discontinuous
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Table 1. Steady-State Kinetic Parameters for MmFAMT Wild-

Type and Mutants Against Different Substrates

MmFAMT KM (mM) kcat (10
�2 s�1) kcat/KM (M�1 s�1)

Wild-Type

C8 308 ± 9 46.1 ± 0.5 1,497

C10 8.2 ± 0.5 24.4 ± 0.4 29,756

3-OH-C8 2,039 ± 172 48.8 ± 1.4 239

3-OH-C10 201 ± 8 59.9 ± 1.1 2,975

SAM 25.5 ± 4.0 59.8 ± 3.2 23,450

Q31A

C8 a a a

3-OH-C10 a a a

Q154A

C8 5,238 ± 427 14.7 ± 0.4 28.1

3-OH-C10 1,028 ± 43 4.2 ± 0.0 40.9

W155F

C8 a a 1.37 ± 0.03

3-OH-C10 a a 3.05 ± 0.16

Y24F

SAM a a 824 ± 19
aCould not be determined.
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assay that employed radiolabeled SAMas a donor (Nawabi et al.,

2011). These differences likely arise from variations in the two

methods used for characterization. However, in the context of

this work, our kinetic data provide an internal standard for

analyzing the effects of specific amino acidmutations on the cat-

alytic activity of MmFAMT, as reported below.

Binding Affinity of MmFAMT for SAM and SAH
The product SAH is known to inhibit some SAM-dependent

methyltransferases. To characterize whether MmFAMT is simi-

larly subject to product inhibition, we carried out isothermal titra-

tion calorimetric (ITC) analysis to measure the binding affinity to

SAM and SAH (Table S1 and Figure S1). MmFAMT binds to SAM

with a dissociation constant (KD) of 33.6 mM, while binding of

SAH occurs with a KD two orders of magnitude smaller

(0.70 mM). For both ligands, binding is driven largely by the en-

thalpic component. These data are consistent with the inhibition

of MmFAMT by the product SAH. It should be noted that all mea-

surements using SAM as the ligand yielded a number of binding

sites of two (n = 2.06 ± 0.01), while measurements with SAH gave

a number of sites of one (n = 0.93 ± 0.01). The basis for this

discrepancy is not clear, as the structural data do not reveal ev-

idence for multiple binding sites. Nonetheless, it is evident from

the binding isotherms that MmFAMT binds tightly to SAH. These

results are in agreement with product inhibition observed in

several members of this family (Kung et al., 2015; Obianyo and

Thompson, 2012; Lee et al., 2005). Hence, both in vivo and

in vitro efficacy of enzymatic methylation of free fatty acids using

FAMTs may be improved if the reactions are coupled to an SAH

nucleosidase to hydrolyze the SAH product.

Crystal Structures of MmFAMT
The unique specificity of bacterial FAMTs for fatty acid sub-

strates cannot be understood in the context of the distantly
Chemistry & Biology 22,
related plant SABATH family of methyltransferases, which share

limited sequence similarities (25% sequence identity), and all of

which function on small-molecule natural products (Liscombe

et al., 2012). To understand this substrate specificity and scope,

we determined several binary and ternary complex structures of

MmFAMT in complex with SAH (1.7 Å resolution), SAH and octa-

noate (1.6 Å resolution), and SAH and 3-hydroxydecanoate

(1.9 Å resolution). We also determined the structure of an

MmFAMT active-site mutant (Q154A) in complex with SAH and

3-hydroxydecanoate (1.85 Å resolution). Initial crystallographic

phases were determined by single-wavelength anomalous

diffraction using selenomethionine (SeMet)-labeled protein

(SAH and decanoic acid), and phases for subsequent structures

were determined by molecular replacement using the resultant

model as a search probe. All crystallographic data collection

and refinement statistics are provided in Table 2.

The overall structure of MmFAMT consists of a di-domain

architecture composed of a Rossmann-like a/b fold that is com-

mon among diverse class I methyltransferases, which is further

elaborated with an all a-helical domain that caps the SAM-bind-

ing site (Figure 2A). The Rossmann-like fold core is formed from

discontinuous regions of the polypeptide chain and space resi-

dues Ser11 through Asp217, Pro255 through Ala287, and

Pro354 through the carboxy terminus. This core consists of a

seven-stranded b-sheet core that is sandwiched between sets

of helical regions. The helical capping domain is similarly

composed of disjointed segments and forms part of the active

site, in a fashion similar to that found in plant natural product

methyltransferases (McCarthy and McCarthy, 2007; Zubieta

et al., 2003; Zhao et al., 2008).

Despite a low conservation in primary sequence, a search of

the PDB (Bernstein et al., 1977) using the Dali server (Holm and

Rosenstrom, 2010) shows that MmFAMT is structurally homolo-

gous to the SABATH class of plant natural product methyltrans-

ferases, which themselves are only distantly related to other

well-characterized small-molecule methyltransferases (D’Auria

et al., 2003). Representative structural homologs include the sal-

icylic acid (SA) O-methyltransferase from Clarkia breweri (PDB:

1M6E; root-mean-square deviation [RMSD] of 2.5 Å over 330

Ca atoms; 23% sequence identity) (Zubieta et al., 2003), the di-

methylxanthine N-methyltransferase from Coffea canephora

(PDB: 2EFJ; RMSD of 3.2 Å over 328 Ca atoms; 22% sequence

identity) (McCarthy and McCarthy, 2007), and indole-3-acetic

acid O-methyltransferase from Arabidopsis thaliana (PDB:

3B5I; RMSD of 2.6 Å over 312 Ca atoms; 23% sequence identity)

(Zhao et al., 2008) (Figure S2). The unexpected structural similar-

ities between MmFAMT and the plant SABATH O-methyltrans-

ferases reflect the similar substrate repertoires of these

enzymes, specifically that they both catalyze methylation of car-

boxylic acid on an otherwise hydrophobic substrate. However,

the nature of the hydrophobic groups differs as the plant en-

zymes utilize larger, bulkier scaffolds that are typically aromatic,

while the FAMTs function on fatty acids containing a long hydro-

carbon acyl chain (Figure 1A).

The plant SABATH methyltransferases described above are

all homodimers in solution and the corresponding crystal struc-

tures demonstrate a two-fold symmetric arrangement. Likewise,

MmFAMT is homodimeric both in solution and in the crystal lattice

(FigureS3). In plantO-methyltransferases that are notmembers of
1–11, November 19, 2015 ª2015 Elsevier Ltd All rights reserved 3



Table 2. Data Collection, Phasing, and Refinement Statistics

Native SeMet C8 3-OH-C10 Q154A-3-OH-C10

Data Collection

Space group P21 P21 P21 P21 P21

a, b, c (Å), b (�) 63.1, 66.1, 98.4, 107.5 62.7, 65.7, 97.5, 107.8 63.1, 66.1, 98.1, 107.4 62.8, 65.9, 98.2, 107.1 62.8, 65.6, 98.2, 107.3

Resolution (Å)a 50–1.7 (1.73–1.7) 50–1.95 (1.98–1.95) 50–1.6 (1.63–1.6) 50–1.9 (1.93–1.9) 50–1.85 (1.88–1.85)

Rsym (%)b 5.4 (52.1) 5.5 (58.8) 6.0 (57.3) 6.5 (54.1) 7.0 (81.4)

I/s(I) 25.6 (2.6) 15.9 (2.2) 20.5 (1.9) 18.2 (2.1) 14.5 (1.9)

Completeness (%) 100 (99.9) 100 (100) 100 (99.7) 99.5 (100) 100 (100)

Redundancy 5.0 (4.8) 4.1 (4.1) 4.2 (3.5) 4.1 (4.1) 4.7 (4.7)

Phasing

FOMc 0.382/0.157

Refinement

Resolution (Å) 25.0–1.7 25.0–1.6 25.0–1.9 25.0–1.85

No. of reflections 80,265 95,148 55,801 61,413

Rwork/Rfree
d 19.5/22.2 19.5/21.8 19.3/23.1 19.3/22.4

No. of atoms

Protein 5,504 5,533 5,525 5,525

Fatty acid - 20 26 44

SAH 52 52 52 52

Water 793 802 563 570

B factors

Protein 16.7 16.9 24.1 23.9

Fatty acid - 16.2 17.2 22.2

SAH 7.9 8.1 12.8 12.6

Water 27.9 28.4 30.9 31.2

RMSD

Bond lengths (Å) 0.000 0.005 0.006 0.006

Bond angles (�) 1.07 1.07 1.15 1.11
aHighest-resolution shell is shown in parentheses.
bRsym = Sj(Ii � <Ii>)jSIi, where Ii is the intensity of the ith reflection and <Ii> is the mean intensity.
cMean figure of merit (acentric/centric).
dR factor = S(jFobsj � kjFcalcj)/S jFobsj, and Rfree is the R value for a test set of reflections consisting of a random 5% of the diffraction data not used in

refinement.
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the SABATH class, notably chalcone O-methyltransferase and

caffeic acid O-methyltransferase, the dimeric arrangement is

functional, with residues from one monomer contributing to the

active site of the other subunit (Zubieta et al., 2001, 2002).

Although the SABATH enzymes are also dimeric, oligomerization

is not needed for activity. Oligomerization of MmFAMT is similarly

likely not functional, as the monomeric entity contains all of the

necessary residues involved in catalysis. Likewise, dimerization

only buries �1,314 Å2 of solvent-accessible surface area (corre-

sponding to 8%of the total surface area of eachmonomer), which

is far less than for the functionally homodimeric enzymes. The

dimerization interface of MmFAMT is similar in organization to

that of the SA O-methyltransferase (Zubieta et al., 2003) and

indole-3-acetic acid O-methyltransferase (Zhao et al., 2008),

both of which also likely function as a monomer.

SAM/SAH and Substrate-Binding Pockets
Similar to other class Imethyltransferases, the SAM/SAH binding

site is situated in the Rossmann-like fold domain, and the ligand

is bound in an extended manner, roughly perpendicular to the
4 Chemistry & Biology 22, 1–11, November 19, 2015 ª2015 Elsevier
plane of the b strands. In the MmFAMT-SAH structure, the py-

rimidine ring of SAH adenine is sandwiched between the side

chain of Phe134, via a p-stacking interaction on one side and

Val99 on the other (Figure 2B). Extensive hydrogen bonding in-

teractions further stabilize the bound SAH, including the interac-

tion between Ser133 and the adenine amine, between Asp98

and both hydroxyls of the ribose, and between Tyr24 and

Ser150 and the a-carboxylate of SAH. Additional contacts are

mediated through van der Waals interactions with non-polar res-

idues that contribute to form the SAM/SAH binding site. An anal-

ogous network of interacting residues stabilizes bound SAM/

SAH in structures of the plant natural product O-methyltrans-

ferases. The extensive set of interactions and the hydrophobicity

of the binding site rationalize why uncharged SAH is a strong

competitive inhibitor of MmFAMT.

The cocrystal structure of MmFAMT with SAH and octanoate

shows that the substrate-binding site is largely localized within

the a-helical domain that caps the Rossmann-like fold

domain (Figure S2A). This capping domain contains a binding

cavity that is sufficiently contoured to accommodate fatty acid
Ltd All rights reserved



Figure 2. Structure of Fatty Acid Methyl-

transferase and Binding Pocket of SAM/

SAH

(A) Ribbon diagram of the MmFAMT/SAH crystal

structure, with one monomer colored in gray and

the other colored in purple (Rossmann-like fold

domain) and cyan (capping domain).

(B) Simulated annealing difference Fourier map

(Fo-Fc) contoured to 2.5s (blue) and 10s (red)

showing the SAM-binding site of MmFAMT. The

coordinates for bound SAH were omitted during

map calculations. The bound ligand is colored

yellow, and residues that interact with the ligand

are colored gray.
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substrates with acyl chain lengths up to C12. Numerous aliphatic

and aromatic residues encircle the acyl chain of the fatty acid

substrate, including Trp155, Met214, Phe222, Tyr224, Val256,

Phe311, and Leu316 (Figure 3A). MmFAMT residues Tyr174,

Met 227, and Asn228 enclose the upper side of the binding cav-

ity, and multiple conformers are observed for the latter two

residues. The planar, extended conformation of the fatty acid

substrate is set by the side chains of Met19, Ala315, and

Leu316 on one side of the substrate and by Trp151 and Tyr224

on the opposite side. In the SA O-methyltransferase cocrystal

structure, Met150 and Met308 similarly sandwich the substrate

for proper positioning at the SAM methyl donor (Zubieta et al.,

2003). Lastly, hydrogen bonding with Gln31 and Trp155 engage

and orient the carboxylate moiety of the fatty acid substrate for

methyl transfer, similar to the Gln25/Trp151 pair utilized by SA

O-methyltransferase to orient the carboxylate of its substrate.

The relative disposition of the a-helical capping and Ross-

mann-like fold domains is slightly different than that observed

in structures of plantO-methyltransferases with a similar bilobed

structure, whichmay also contribute to different substrate scope

of the FAMTs (Figure S2).

A comparison of the MmFAMT/SAH cocrystal structures with

bound octanoate and 3-hydroxydecanoate suggests a rationale

for understanding why MmFAMT shows a preference for the

larger substrate (KM values of C10 substrates lower by a factor

of �10–40 relative to the C8 counterparts; Table 1). While

Met227 and Asn228 are observed as multiple conformers in

the cocrystal structure with octanoate (Figure 3B), both of these

residues exist in single conformations oriented away from the

substrate-binding cavity to accommodate the larger acyl chain

in the SAH/3-hydroxydecanoate structure (Figure 3D). This

movement is accompanied by a compensatory reorganization

of a loop spanning residues Leu166 through Gln171, located

near the omega carbon of the fatty acid, resulting in tighter pack-

ing against C9 and C10 of the acyl chain (Figure 3D). Movement

of these side chains fills the substrate-binding cavity but only

with acyl chains of length C10–C12, and likely explains why

these longer-chain fatty acids are better substrates than octa-

noate (Figures 3B and 3D). There are limited interactions in the

active site with the 3-hydroxyl moiety, asGln154 is located within

hydrogen bonding distance and the thioether of Met214 is more

than 3.2 Å away. Placement of the polar 3-hydroxyalcohol in a

hydrophobic binding pocket without sufficient compensatory in-

teractions may explain the higher KM values for 3-hydroxy-con-

taining substrates relative to their acyl counterparts (Table 1).
Chemistry & Biology 22,
Lastly, Gln154 is positioned to hydrogen bond with the carbox-

ylate of the substrate in the MmFAMT/SAH/octanoate structure.

However, a modest rotation of the plane of the substrate, neces-

sary to maximize interactions of the 3-hydroxyl group with

Gln154, results in a slight movement of this residue away from

the substrate carboxylate in the MmFAMT/SAH/3-hydrodeca-

noate structure.

In the cocrystal structure of MmFAMT with 3-hydroxydeca-

noate, only the S enantiomer was bound in the active site,

although an enantiomeric mixture of 50% R and 50% S was

used in the crystallization condition. This enantiomeric selectivity

is due to the presence of hydrophobic residues (Phe311 and

Trp151) on one side of the active site in close proximity to the

carboxyl group, and the presence of Gln154 on the other side

in a position favorable for hydrogen bonding with the 3-hydroxyl

group of the S enantiomer. Although the physiological role of

MmFAMT is yet to be elucidated, this enantiomeric specificity

may be of physiological relevance. 3-Hydroxylated fatty acids

are found in mycobacterial phospholipids (Alugupalli et al.,

1994, 1995), enter b-oxidation as (S)-3-hydroxyacyl coenzyme

A (Shimakata et al., 1979; Williams et al., 2011), and are part of

the mycolic acid biosynthesis as (R)-3-hydroxy-acyl-ACP (acyl

carrier protein) (Sacco et al., 2007; Marrakchi et al., 2014).

Methylation of the carboxyl group of the (S)-3-hydroxy fatty acids

may be part of any of these processes by regulating the fate of

the (S)-3-hydroxy fatty acids. This hypothesis, however, is yet

to be investigated.

Molecular Basis for Fatty Acid Substrate Specificity
As noted, the structure of MmFAMT shares several features with

that of SA O-methyltransferase (Zubieta et al., 2003), including

the presence of a hydrophobic a-helical domain that caps the

SAM-binding site. While both enzymes utilize a similar constella-

tion of active-site residues to orient the substrate carboxylate

(Gln31/Trp155 in MmFAMT and Gln25/Trp151 in SA O-methyl-

transferase), the capping domain establishes specificity for the

hydrophobic part of the substrate (Figures 4A and 4B). Specif-

ically, the contours of each cavity are optimized for its cognate

substrate. In SA O-methyltransferase the active site is border-

lined by Ile 225, Trp226, Tyr255, and Phe347, and in MmFAMT

by Tyr174, Phe222, Tyr224, Met227, and Asn228. The replace-

ment of Ile225 and Trp226 (in SA O-methyltransferase) by

Met227 and Asn228 (in MmFAMT) creates a larger cavity to

accommodate the longer acyl chain of the fatty acid (Figures 3,

4A, and 4B).
1–11, November 19, 2015 ª2015 Elsevier Ltd All rights reserved 5



Figure 3. FAMT Active Site with Bound Substrates

(A and C) Difference Fourier maps (Fo-Fc) contoured to 2.5s (blue) showing the

bound fatty acid substrates (colored green).

(B and D) Surface cut-away diagram showing that binding of the larger sub-

strate results in a smaller cavity due to movement of Leu166 through Gln171.
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Although the constrained smaller cavity of SA O-methyltrans-

ferase may not accommodate a fatty acid, the larger cavity of

MmFAMT raised the question as to whether MmFAMT can utilize

SA as a substrate despite the lack of residues that would anchor

the aromatic ring in an optimal orientation. To further investigate

this, we carried out reactions (2 hr incubation at 37�C) of

MmFAMT with SA in triplicate, and analyzed the products by

gas chromatography-mass spectrometry (GC-MS). Surprisingly,

MmFAMT is able to catalyze methylation on SA (Table S2). A

closer examination of an active-site superposition of the cocrys-

tal structures of MmFAMT/SAH/octanoate and SA O-methyl-

transferase/SAH/SA reveals that SA can be accommodated

into the MmFAMT active site. Although the positioning of

Phe311 (Cys307 in SA O-methyltransferase) would seemingly

cause some steric clashes, the residue at the other side of the ar-

omatic ring (Tyr255 in SA O-methyltransferase) is a smaller

Val256 in MmFAMT, which would allow for positioning of SA as

a substrate. Equivalent, but distinct, residues in the MmFAMT

active site could orient SA. However, in SAO-methyltransferase,

Ile225 and Trp226, which are replaced by the aforementioned

flexible Met 227-Asn228 in MmFAMT, constrict the upper end

of the active site to accommodate the smaller SA substrate (Fig-

ures 4A and 4B). Consequently, it is likely that SA may not bind

very well in the MmFAMT active site.

Kinetic Analysis of Wild-Type and Mutant MmFAMTs
The cocrystal structures of MmFAMT identified a number of res-

idues that may play a role in either substrate binding or catalysis.
6 Chemistry & Biology 22, 1–11, November 19, 2015 ª2015 Elsevier
To further probe this function, we generated site-specific muta-

tions at several of these residues and determined kinetic param-

eters for the variant enzymes (Table 1). The Gln31/Ala mutation

had an immense effect on the enzyme activity, as no product for-

mation could be detected even when 20-fold more enzyme and

much greater concentrations (up to 5 mM) of substrate were

used. Similarly, the Trp155/Phe mutation resulted in a near

1,000-fold decrease in catalytic efficiency (kcat/KM). As Gln31

and Trp155 are situated near the carboxylate of the substrate,

the Gln31/Ala and Trp155/Phe mutations likely compromise

binding and orientation of the substrate, consistent with the loss

of activity in each of these mutants.

The Gln154/Ala mutation had a large effect on the KM of

MmFAMT with octanoate as a substrate (17-fold increase), and

a smaller effect on the KM for 3-hydroxydecanoate (5-fold in-

crease). This was an unexpected result, as Gln154 is within

hydrogen bonding distance to the 3-hydoxyl group, and a

mutation at this residue would be expected to cause a much

greater increase in the KM for the 3-hydroxy fatty acid. To

provide a rationale for this observation, we determined the

1.85-Å resolution cocrystal structure of MmFAMT Gln154/Ala

in complex with SAH and 3-hydroxydecanoate. The structure

shows that the 3-hydroxyl group rotates toward the sulfur

of Met214 to compensate for the loss of interaction with

Gln154 (Figure S4), explaining why this mutation results in only

a modest increase in the KM for 3-hydroxydecanoate. The

Gln154/Ala mutation also results in the carboxylate shifting

away to result in a less optimal orientation for methyl transfer,

consistent with a 10-fold lower kcat for the mutant relative to

wild-type MmFAMT.

Conclusions
Our collective structural and biochemical analysis demonstrates

how MmFAMT uses a SABATH plant natural product methyl-

transferase architecture to catalyze the methylation of fatty

acid substrates. This adaptation is a result of minor alterations

in secondary structural elements, and of the changes in the

disposition of the a-helical capping domain, which engages

the substrate, relative to the Rossmann-like fold domain that

harbors the methyl donor. Nonetheless, the identification of

MmFAMT as a structural homolog of the SABATH class of meth-

yltransferases extends the function of Pfam03492 (D’Auria et al.,

2003) to beyond plant metabolism.

Prior studies on the plant SABATH members suggest that

these enzymes do not require a general base to deprotonate

the substrate methyl acceptor, as its carboxylate is likely

ionized at physiological pH due to its low pKa (Zubieta et al.,

2003). Likewise, there are no residues in the active site of

MmFAMT that can abstract the proton from the fatty acid

carboxylate prior to methyl transfer, suggesting that the

enzyme active site simply serves to facilitate proximity and

orientation of the reactive groups. The side-chain amide of

Gln31 and the indole nitrogen of Trp155 are within hydrogen

bonding distance from the two carboxylate oxygens, and

structure-guided engineering studies (Zubieta et al., 2003)

demonstrate that replacement of the equivalent Gln in plant

O-methyltransferases establishes selectivity against different

methyl acceptors. The replacement of both of these residues

in the MmFAMT homolog from Mycobacterium smegmatis
Ltd All rights reserved



Figure 4. Methyltransferase Active Site Comparisons

(A and B) Comparison of active sites in (A) MmFAMT (gray) with bound SAH (pink), octanoic acid (green) and (B) the SABATH family enzyme SA O-methyl-

transferase (gray) with bound SAH (pink) and salicylic acid (cyan).

(C) Structure-based alignment of the primary sequences of MmFAMT, MsXMT, and SAO-methyltransferase. The green triangles demarcate residues involved in

interactions with the carboxylic acid, the brown circles demarcate residues that form the fatty acid binding pocket, and the magenta diamonds indicate residues

that interact with SAH/SAM.
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(52% sequence identity, UniProt: A0R0D4) (MsXMT in Fig-

ure 4C) may account for the lack of activity against fatty acid

substrates in the latter (Nawabi et al., 2011).

Studies of plant SABATH enzymes have determined that small

changes in the primary amino acid sequence of these enzymes

can establish methyltransferase activity on structural scaffolds

with diverse chemical structures. Similarly, small changes in

the primary sequence of mycobacterial methyltransferases ho-

mologous to MmFAMT (Figures 5 and S6) provide a pool of en-

zymes that have been engineered by nature to utilize fatty acids

of different chain lengths. The identification of the active site res-

idues of MmFAMT that recognize the carboxyl of the substrate

as well as the residues that line the hydrophobic pocket that har-

bors the fatty acid tail can guide the selection of MmFAMT ho-
Chemistry & Biology 22,
mologs for the in vivo production of various FAMEs of desired

length.

Prior attempts to utilizeMmFAMT for production of biodiesel in

E. coli (Nawabi et al., 2011) resulted in yields that were consider-

ably lower than for other reported fatty acid ethyl esterification

processes (Steen et al., 2010). From the crystal structure of

MmFAMT, as well as the previous in vivo studies (Nawabi

et al., 2011), it is evident that MmFAMT can methylate me-

dium-chain fatty acids (up to 12–14 carbons long), which could

account for the low observed yields. Specifically, low compati-

bility between MmFAMT and the fatty acid thioesterases

used to generate the fatty acid substrate would result in

methylation of only a fraction of the available fatty acids. The uti-

lization of complementary combinations of thioesterases with
1–11, November 19, 2015 ª2015 Elsevier Ltd All rights reserved 7



Figure 5. Sequence Similarity Network

The network (Gerlt et al., 2015; Shannon et al., 2003) contains 838 nodes and

242,549 edges. Each node represents amino acid sequences that are 95% or

more identical, and each edge connects a pair of sequences at an E value of

better than 1 3 10�30. This E value is the one generated by the EFI-EST (Gerlt

et al., 2015), and is not identical to E values generated by BLAST (Gerlt et al.,

2015; Altschul et al., 1990; Altschul, 1993). Teal, plants; indigo, actinobacteria;

fuchsia, proteobacteria; green, cyanobacteria; red, fungi; plum, other.

Please cite this article in press as: Petronikolou and Nair, Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the
Enzymatic Production of Biodiesel, Chemistry & Biology (2015), http://dx.doi.org/10.1016/j.chembiol.2015.09.011
mycobacterial methyltransferases that accept different fatty acid

substrate lengths can result in better yields. Based on our re-

sults, additional metabolic engineering, for example, overex-

pression of an efficient SAH nucleosidase to avert product

inhibition by SAH, can further increase the methyl ester produc-

tion. These data provide a starting point for engineering efforts

directed at exploiting bothMmFAMTandhomologs for the in vivo

production of various FAMEs of desired length.

SIGNIFICANCE

Methylation of free fatty acids affords a viable route toward

the production of biodiesel. The structure of themycobacte-

rial FAMT reveals an architectural conservation with en-

zymes involved in plant natural product biosynthesis. Kinetic

analysis of structure-based variants provides a rationale for

substrate specificity. These data provide the framework for

further engineering experiments aimed at expanding the

substrate scope of this biotechnologically relevant catalyst.

EXPERIMENTAL PROCEDURES

Chemicals and Reagents

All chemical reagents were purchased from Sigma-Aldrich unless otherwise

noted. All of the materials used for protein production and purification were

purchased from GE Healthcare.

Cloning and Site-Specific Mutagenesis

MmFAMT (GenBank: NC010612; gene MMAR3356) was amplified using PCR

with template genomic DNA of Mycobacterium marinum strain M (ATCC
8 Chemistry & Biology 22, 1–11, November 19, 2015 ª2015 Elsevier
BAA-535) and primers designed based on the published sequence. The

gene was cloned into the NdeI/BamHI sites of a pET28b vector, and this

plasmid was used as template for the generation of the site-specific mutants

by PCR (Table S3). The integrity of all recombinant plasmids was confirmed

by sequencing (ACGT).

Protein Expression and Purification

Expression vectors bearing wild-type or mutant MmFAMT were transformed

into E. coli Rosetta 2(DE3) cells for heterologous protein production. A 5-ml

starter culture was inoculated in 2 L of Luria-Bertani growth medium supple-

mented with 50 mg/ml kanamycin and 25 mg/ml chloramphenicol. The culture

was grown at 37�C until the absorbance at 600 nm reached 0.6–0.8, at which

point protein production was induced by addition of 0.3 mM isopropyl-b-D-1-

thiogalactopyranoside. The culture was then cooled to 18�C and grown for an

additional 18 hr. Cells were collected by centrifugation, resuspended in 20mM

Tris-HCl (pH 8.0), 500mMNaCl, and 10%glycerol buffer, and lysed bymultiple

passages through a C5 Emulsiflex (Avestin) cell homogenizer. Following

centrifugation of the lysate, the supernatant was applied to a 5-ml His-Trap

(GE Biosciences) column that was previously equilibrated with 20 mM Tris-

HCl (pH 8.0), 1 M NaCl, and 30 mM imidazole. The column was extensively

washed with the same buffer, and elution of specifically bound protein was

carried out using a gradient of increasing imidazole concentration. Fractions

containing protein of the highest purity (as determined by SDS-PAGE) were

pooled and the polyhistidine affinity tag was removed by overnight incubation

with thrombin at 4�C. Samples were further purified using size-exclusion chro-

matography (Superdex HiloadTM 200 16/60) in a buffer of 20 mM HEPES

(pH 7.5) and 300 mM KCl. Samples were concentrated using a 10,000-Da mo-

lecular weight cutoff Amicon centrifugal filter. SeMet MmFAMT was produced

by repression of methionine biosynthesis in defined media prior to protein in-

duction (Doublie, 1997), and was purified as described above. All proteins

were flash-frozen in liquid nitrogen and stored at �80�C. Prior to freezing,

2.5% glycerol (final concentration) was added to samples of wild-type and

mutant proteins used for kinetic analysis, but not to samples used for crystal-

lographic studies.

Crystallization

Initial crystallization conditions were determined by the sparse matrix sam-

pling method using commercial screens. Crystals of the MmFAMT/SAH com-

plex were grown using the hanging-drop vapor diffusionmethod. In brief, 0.9 ml

of protein at 4 mg/ml concentration was incubated with 2 mM SAM for 1 hr on

ice, and was subsequently mixed with 0.9 ml of precipitant solution (0.1 M

MgCl2, 0.1 M N-(2-acetamido)iminodiacetic acid [pH 6.5], 12% polyethylene

glycol 6000) and 0.2 ml of 7% (v/v) 1-butanol, and equilibrated over a well

containing the same precipitant solution at room temperature. Although the

crystallizationmedia used SAM, the resultant structure revealed density corre-

sponding to SAH, due to either hydrolysis or the presence of trace amounts of

SAH in the SAM preparation. Crystals grew within 2 days, and were transiently

soaked in precipitant solution supplemented with 30% glycerol prior to vitrifi-

cation by direct immersion in liquid nitrogen. Ligand bound crystals were

grown similarly using protein that was incubated with 2 mM SAH, 2 mM (3-hy-

droxy) fatty acid, and 1 mM DTT for 30 min prior to crystallization.

Data Collection, Phasing, and Structure Determination

X-Ray diffraction data were collected at Life Sciences Collaborative Access

Team (LS-CAT), Sector 21, Argonne National Laboratory. All data were in-

dexed, integrated, and scaled using either HKL2000 or XDS. Initial crystallo-

graphic phases were determined by single-wavelength anomalous diffraction

from the SeMet-labeled protein crystals of the MmFAMT-SAH complex using

data collected near the SE absorption edge (l = 0.97872 Å). Due to the low

symmetry of the SeMet crystals (monoclinic setting), care was taken during

crystal alignment to maximize the simultaneous collection of Bijvoet pairs.

A four-fold redundant dataset was collected to 1.95 Å resolution (Rmerge of

5.5%, I/s(I) of 2.2 in the highest-resolution shell) using a MAR CCD detector.

The heavy-atom substructure was determined using SHELX (Sheldrick,

2010). The heavy-atom positions were imported into SHARP (Bricogne et al.,

2003) for maximum-likelihood refinement resulting in preliminary phases with

a mean figure of merit of 0.382. Density modification using solvent flattening

and non-crystallographic symmetry averaging yielded a map of exceptional
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quality, which allowed for nearly all of the main chain and roughly half of the

side chains to be automatically built using Buccaneer (Cowtan, 2006, 2008)

as implemented in the CCP4 suite of programs (Winn et al., 2011). Additional

cycles of manual rebuilding interspersed with crystallographic refinement us-

ing REFMAC5 (Murshudov et al., 2011) resulted in the final model. The final

cycles of model building and refinement were carried out against high-resolu-

tion data collected on native crystals of MmFAMT-SAH.

Cocrystal structures with bound ligands were all determined by molecular

replacement as implemented in the Phenix program suite (Adams et al.,

2010), using the refined coordinates of SeMet MmFAMT as search model.

The resultant solutions were subsequently used as starting models for

several rounds of automated model building using the ARP/wARP web

server (Winn et al., 2011; Murshudov et al., 2011; Langer et al., 2008), fol-

lowed by rounds of manual rebuilding using Coot (Emsley et al., 2010),

combined with crystallographic refinement using REFMAC5 (Murshudov

et al., 2011). Ligands were built in Coot, and water molecules were added

using the ARP/wARP solvent building software of the CCP4 suite (Lamzin

and Wilson, 1993), and confirmed by manual inspection. In all cases, the

quality of the in-progress model was routinely monitored using both

the free R factor (Read et al., 2011) and MolProbity (Chen et al., 2010) for

quality assurance.

Determination of Kinetic Parameters

For all experiments, SAM was further purified by high-performance liquid

chromatography (HPLC) using a C18 column (Vydac; 5-mm particle size,

4.6 3 250 mm) and monitoring absorbance at 260 nm. The column was

washed for 30 min with solvent B (methanol with 0.1% trifluoroacetic acid),

and equilibrated for 15 min with solvent A (water with 0.1% trifluoroacetic

acid). SAM was injected into the column and a gradient elution was applied

as follows: wash with 5 ml of solvent A, elute with a linear gradient to a final

20% of solvent B, and wash with 5 ml of solvent B. The flow rate was 1 ml/min

throughout the procedure. The fraction of SAM collected was subsequently

lyophilized and stored at �20�C. Fresh solution of SAM was prepared before

each experiment.

The kinetic parameters of the wild-type and mutant proteins were deter-

mined using a photospectrometric assay that monitors the production of

SAH (Dorgan et al., 2006; Wooderchak et al., 2008). All enzyme reactions

were performed in 100 mM HEPES (pH 7.8) and 300 mM KCl at 37�C, and
monitored at 265 nm for up to 20 min. Control reactions without addition of

the substrate were also included to take into account any background hydro-

lysis of SAM over time. For determination of the Michaelis-Menten parameters

of the wild-type enzyme and mutants for the fatty acids and 3-hydroxy fatty

acids, a 150-ml reaction volume contained the following components: 0.1–

2.0 mM MmFAMT, 1 mM SAH nucleosidase, 0.2 mM adenine deaminase,

1mMMnSO4, 80 mMSAM, and various concentrations of fatty acids and 3-hy-

droxy fatty acids. For determination of the kinetic parameters for SAM, a 150-ml

reaction volume contained 0.2 mMMmFAMT, 1 mMSAH nucleosidase, 0.2 mM

adenine deaminase, 1 mM MnSO4, 3 mM C8, and various concentrations of

SAM. Based on the initial reaction rates, the apparent KM and Vmax values

were determined using the Michaelis-Menten function of Origin (OriginLab).

Results are means ± SEM of triplicate experiments.

Formutants with very increased KM values for C8 or 3-OH-C10, saturation of

the enzyme could not be achieved due to limited solubility of the substrates in

the reaction buffer. In these cases, the apparent KM and Vmax values could not

be determined, but the kcat/KM values were obtained by plotting the observed

rates (kobs) at four different substrate concentrations (Figure S5). For the Y24F

mutant, the kinetic parameters for SAM, and consequently for C8 and 3-OH-

C10, could not be determined, as the KM value increased such that saturation

of the enzyme could not be achieved due to limitations of the assay (concen-

tration of SAM used should be kept below 250 mM to remain in the linear range

of the spectrophotometer [Dorgan et al., 2006]).

To attest that the coupling enzymes were not rate limiting, the initial rates of

0.1, 0.2, and 0.4 mM wild-type enzyme were determined by addition of 3 mM

C8. The means of the observed rates ± SEM were found to be the same (Fig-

ure S5A), indicating that the coupling enzymes are not rate limiting. Conse-

quently, the measured rate corresponds to the rate of MmFAMT.

All substrates were purchased from Sigma-Aldrich, except for the 3-OH-C8,

which was purchased from Matreya. The 3-hydroxy fatty acids were pur-
Chemistry & Biology 22,
chased as enantiomeric mixtures. However, it is clear from the crystal struc-

ture of the enzyme complexed with SAH and 3-OH-C10 that the enzyme

utilizes only the S enantiomer (Figures 3C and S4). Subsequently, the enantio-

meric ratio was determined by Mosher ester analysis (Hoye et al., 2007), and

was found to be 1:1.

End-point Activity Assay

The activity of thewild-type enzyme for SAwas investigated byGC-MS. 100-ml

reactions containing 50 mM wild-type MmFAMT, 500 mM SAH nucleosidase,

5mMSAM, and 10mMsubstrate were incubated at 37�C for 2 hr. The samples

were cleaned from the enzyme with a 10,000-Da molecular weight cutoff

Amicon spin filter, and analyzed by the Roy J. Carver Biotechnology Center

(University of Illinois at Urbana Champaign). All reactions were performed in

the same buffer used for kinetic analysis supplemented with 5% methanol

(final concentration). To confirm that methanol did not deactivate the enzyme

and that possible observed inactivity was not due to its addition, reactions

containing wild-type MmFAMT and C8 were included. Control reactions

without addition of the enzyme were also analyzed. Results are means ±

SEM of triplicate experiments.

Isothermal Titration Calorimetry

The binding affinity of wild-type MmFAMT for SAM and SAH was measured at

25�C using a VP-ITC microcalorimeter (Microcal). Protein and ligands were in

the same buffer used for kinetic analysis. For binding of SAM, 1.1–1.15 mM

SAMwas injected into the reaction cell containing 30–35 mM protein in 28 suc-

cessive aliquots at 300-s intervals and 20.5-s duration, with a reference power

of 2 mcal/s. For binding of SAH, 0.52–0.54 mM SAH was injected into the reac-

tion cell containing 40–42 mM protein in 28 successive aliquots at 240-s inter-

vals and 20.5-s duration, with a reference power of 6 mcal/s. All injections were

10 ml in volume, except for the first injection which was 4 ml and was excluded

from data analysis. The protein-ligand buffer was used in the reference cell,

and a titration of the ligand into just the buffer was subtracted from the mea-

surements. Non-linear regression with a single-site fitting model (MicroCal

Origin) was applied for data analysis, and the thermodynamic parameters

were calculated using the Gibbs free energy equation (DG = DH � TDS) and

the relationship DG = �RTlnKa. Results are means ± SEM of duplicate exper-

iments. For all binding experiments, freshly purified protein was used, and

commercial preparations of SAM were purified by HPLC as described above.

Sequence Similarity Network

A sequence similarity network was generated by using the Enzyme Function

Initiative Enzyme Similarity Tool (EFI-EST: http://efi.igb.illinois.edu/efi-est/)

(Gerlt et al., 2015) with the sequence of MmFAMT as the query for a BLASTP

(Altschul et al., 1990; Altschul, 1993) search of the UniProtKB database (http://

www.uniprot.org/) (UniProt Consortium, 2015). Only sequences of 300–450

amino acids were included for the subsequent generation of a network with

E-values equal to or lower than 1 3 10�30. This network was visualized using

Cytoscape 3.2.1 (Figure 5) (Shannon et al., 2003).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supporting Methods, six figures, and four

tables and can be found with this article online at http://dx.doi.org/10.1016/j.
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