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a b s t r a c t

PEG-400 and glycerol were successfully used as recyclable solvents for the synthesis of several organyl-
thioenynes in good to excellent yields and high selectivity using solid supported catalyst (KF/Al2O3). This
easy, general and improved method furnishes the corresponding alkenyl sulfides preferentially with Z
configuration. The catalytic system and the glycerol or PEG-400 can be reused up to three times without
previous treatment with comparable activity.

� 2010 Elsevier Ltd. All rights reserved.
Vinyl sulfides are a valuable tool in organic reactions, acting as increased in the last few years.11 Despite several advantages, the
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key intermediate in organic synthesis.1 Besides, vinyl sulfides are
present in natural occurring compounds such as griseoviridin, a
type A streptogramin antibiotic, firstly isolated from Streptomyces
graminofaciens2 and benzylthiocredillidone, a yellow pigment iso-
lated from the brightly red colored sponge Crella spinulata.3 The
most common methods for the preparation of vinyl sulfides in-
volve the addition of thiol, or thiolate anions, to alkynes.4–6 A
drawback of most of these protocols is the use of toxic organic sol-
vents, transition-metals catalysts4 or stoichiometric amounts of
base.5 More recently, some improvements on selective preparation
of vinyl sulfides have been described under solvent-free or cata-
lyst-free conditions.6–8 Among the vinyl sulfides, organylthioeny-
nes are very useful synthons in organic synthesis, because they
can be used as precursor to enediynes and other functionalized
olefins. However, the number of methodologies for accessing
thioenynes is limited and the development of protocols for
rigorous regio- and stereochemical controlled synthesis of these
compounds remains yet a challenge.5b,6,9

The use of potassium fluoride supported on alumina (KF/Al2O3)
as a green catalytic system for a number of transformations has
been increased.10 By using KF/Al2O3, the products can be easily iso-
lated by filtration and the generation of large amounts of salts at
the end of the synthesis, as well as the use of stoichiometric strong
bases, can be avoided. On the other hand, the development of envi-
ronmentally benign and clean synthetic methods, including those
involving solvent-free or the use of alternative solvents, such as
water, ionic liquids (ILs), and polyethylene glycol (PEG), has
ll rights reserved.
solvent-free methods are restricted to systems where at least one
of the reagents is a liquid at room temperature, while the use of
ILs has some drawbacks, such as the high cost and the liberation
of hazardous HF during recycling. In this line, the use of PEG and
glycerol as promising media for organic reactions was recently
demonstrated by us12,13 and others.14–18

Recently, we have described several efficient approaches using
KF/Al2O3.19 As a continuation of our studies we report herein the
results of the hydrothiolation of 1,4-diorganyl-1,3-butadiynes 1
using KF/Al2O3 and PEG-400 or glycerol as recyclable solvents for
this reaction (Scheme 1).20,21

Initially, we chose 1,4-diphenyl-1,3-butadiyne 1a and benzene-
thiol 2a as standard starting materials in the presence of 3.0 mL of
PEG-400. We examined the temperature, amount of KF/Al2O3 (50%)
and the use of N2 atmosphere. It was found that stirring a mixture
of 1a (1.0 mmol) and 2a (1.0 mmol) in the presence of 0.07 g of KF/
Al2O3 (50%) at room temperature, a mixture of (Z)- and (E)-1,4-di-
phenyl-2-(phenylthio)but-1-en-3-ynes 3a was obtained in an
overall yield of 34% after 26 h, together with a great amount of
diphenyl disulfide (Table 1, entry 1).

Best results were obtained using 0.14 g and 0.28 g of KF/Al2O3,
but long reaction times were required (Table 1, entries 2 and 3).
On the other hand, when the same protocol was performed using
0.07 g of KF/Al2O3 on gentle heating (60 �C) the product was
1a-d
3a -g

or PEG-400, 60 ºC 
2a-d

R1

Scheme 1.
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Table 1
Optimization of the synthesis of thiobut-1-en-3-yne 3aa,b

Entry Solvent KF/Al2O3 (g) Temp. (�C) Time (h) Yield (%)

1 PEG-400 0.07 rt 26 34
2 PEG-400 0.14 rt 26 52
3 PEG-400 0.28 rt 26 87
4 PEG-400 0.07 60 1.5 93
5 PEG-400 0.06 60 7 85
6 PEG-400 0.04 60 8 74
7 PEG-400 None 60 2 13
8 Glycerol 0.07 60 6 8
9 Glycerol 0.07 90 6 64

10 Glycerol 0.07 120 6 45

a Reaction conditions: Diyne 1a (1.0 mmol); benzenethiol 2a (1.0 mmol).
b For all the tested examples, a little amount of (E)-3a was also formed.
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obtained in 93% yield after only 1.5 h (Z:E ratio = 92:8, Table 1, en-
try 4). When smaller amounts of the catalyst were used, the prod-
uct 3a was obtained in lower yields (entries 5 and 6). In the
absence of the catalytic system, 3a was obtained only in 13% yield
and with a loss of selectivity (Z:E ratio = 75:25, Table 1, entry 7).
Table 2
Hydrothiolation of butadiynes using KF/Al2O3 and glycerol or PEG as solvent

Entry Butadiyne 1 Thiol 2 Product 3

1 C6H5 C6H5

1a
C6H5SH 2a

(Z )-3a

C6H5S

C6H5

C6H5

+

C

2 1a 2a (Z)-3a + (E)-3a

3 C6H5 C6H5

1a
p-ClC6H4SH 2b

(Z )-3b

4-ClC6H4S

C6H5

C6H5

4 1a 2b (Z)-3b + (E)-3b

5 C6H5 C6H5

1a

SC4H9SH 2c

(Z )-3c

SC4H9S

C6H5

C6H5

+

SC

6 1a 2c (Z)-3c + (E)-3c

7 C6H5 C6H5

1a
p-CH3OC6H4SH 2d

(Z )-3d

4-CH3OC6H4S

C6H5

C6H

+

8 1a 2d (Z)-3d + (E)-3d

9

1b

OHHO C6H5SH 2a

OH
(Z )-3e

C6H5S

HO C

+

10 1b 2a (Z)-3e + (E)-3e

11

1c

HO

OH

C6H5SH 2a

OH(Z)-3f

C6H5S

HO

+

12 1c 2a (Z)-3f + (E)-3f

13 C6H5

1d

HO C6H5SH 2a

(Z )-3g

C6H5S

HO

+

C6H5

a Determined by GC and 1H NMR of the crude reaction mixture and confirmed after i
b Yields of pure products isolated by column chromatography (hexanes/AcOEt) and id
c Reaction performed in a 5 mmol scale.
d Reaction was performed in the presence of the hydroquinone.
e Reaction was performed under N2 atmosphere.
Besides, the use of glycerol as a solvent was evaluated. However,
when the reactions were performed in the presence of glycerol at
the same temperature (60 �C), 3a was formed in poor yield (Table 1,
entry 8). To our satisfaction, by increasing the temperature to 90 �C
the reaction proceeds smoothly, furnishing the product 3a in satis-
factory yield (Z:E ratio = 95:5, Table 1, entry 9). When the temper-
ature was increased to 120 �C, poor yields were obtained (Table 1,
entry 10). In an optimized reaction, 1,4-dipheny-1,3-butadiyne 1a
(1.0 mmol) was dissolved in glycerol (3 mL) and reacted with ben-
zenethiol 2a (1.0 equiv) at 90 �C during 6 h under N2 atmosphere,
yielding 3a in 64% yield (Scheme 1).

Using the optimized conditions,21 the protocol was extended to
other thiols and symmetric conjugated butadiynes to produce
organothioenynes 3b–f in good to excellent yields (Table 2). The
small yield observed when glycerol was used can be attributed
to a competition between the hydrothiolation reaction and the
thiol oxidation to afford the respective disulfides. For all the stud-
ied examples, a variable amount of disulfide was isolated. This is in
agreement with a recent report of our group describing the clean
oxidation of thiols to disulfide in the presence of KF/Al2O3.19b
Time (h) Solvent Ratioa (Z):(E) Yieldb (%)

(E)-3a C6H5

6H5S

C6H5

1.5 PEG
92:8 93
(89:11)c (89)c

(90:10)d (92)d

1.5 Glycerole 95:5 64

(E )-3b C6H5

+

4-ClC6H4S

C6H5 2 PEG 89:11 86

2 Glycerole 88:12 79

(E)-3c C6H5

4H9S

C6H5 1 PEG 95:5 95

2.5 Glycerole 93:7 39

5 (E)-3d C6H5

4-CH3OC6H4S

C6H5 2.5 PEG 100:0 78

3 Glycerole 100:0 62

OH
(E)-3e

6H5S

HO 2 PEG 100:0 83

1.5 Glycerole 100:0 88

OH(E)-3f

C6H5S

HO 2 PEG 100:0 97

2 Glycerole 100:0 98

(E )-3g

C6H5S

HO

C6H5

2 PEG 100:0 92

solation of pure products.
entified by mass spectrometry, 1H and 13C NMR.5b,9
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Satisfactory results were achieved using alkyl thiols and aryl thiols
containing electron donating or electron withdrawing groups
(Table 2, entries 1–8). The use of diynols afforded good to excellent
yields of desired products (Table 2, entries 9–12). Additionally,
when the unsymmetrical 2-methyl-6-phenylhexa-3,5-diyn-2-ol
1d reacted with benzenethiol 2a, we observed exclusively the for-
mation of (Z)-2-methyl-6-phenyl-3-(phenylthio)hex-3-en-5-yn-2-
ol 3g in 92% yield (Table 2, entry 13). In this case, the propargylic
triple bond underwent addition of the phenylthiolate anion prefer-
entially than the triple bond containing the phenyl group.5b A reuse
study of the solvent/catalytic system was carried out for the reac-
tion.22 After completion of hydrothiolation, the reaction mixture
was diluted with hexane/ethyl acetate (90:10) and the product
was isolated. The remaining PEG or glycerol/KF/Al2O3 mixture
was directly reused for further reactions. It was observed that a
good level of efficiency was maintained even after three cycles.
Thus, the product 3a was obtained in 93%, 89%, 80% yields using
PEG as solvent, while using glycerol, the isolated yields were
64%, 55%, and 48% after successive cycles.

Concerning the stereochemistry of products, the formation of
(Z)-enyne was preferential for all the tested examples. Thus, Z-3a
was obtained preferentially from the reaction of 1,4-diorganyl-
1,3-butadiyne 1a with benzenethiol 2a (Z:E ratio = 92:8, Table 2,
entry 1), while 4-methoxybenzenethiol 2d afforded exclusively
the respective (Z)-adduct 3d (entries 7 and 8). A similar 100% ste-
reoselectivity was observed when the diynols 1b and 1c were used,
giving exclusively the respective adducts 3e and 3f with Z config-
uration (Table 2, entries 9–12). Comparable result was obtained
using a radical inhibitor. Thus, the reaction of 1a with 2a was per-
formed in the presence of the hydroquinone affording the product
3a in 92% yield and with a Z:E ratio = 90:10 (Table 2, entry 1). This
result is in according with a probable anionic mechanism.

In summary, an efficient and clean protocol was developed for
the selective synthesis of thiobutenynes. The reaction is promoted
by KF/Al2O3 and can be performed using glycerol or PEG as sol-
vents. The reactions proceeds easily and the products were ob-
tained in good to excellent yields. The use of glycerol as a
renewable, non-toxic, and recyclable solvent opens new possibili-
ties for future applications of glycerol in green and sustainable
chemistry.
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