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ABSTRACT A 9,9’-spirobifluorene, functionalized in the 2,2’-positions with two 6-methyl-2-pyndmyl- 
aminocarbonyl residues, provides a cl& binding site for the selective 1 :I complexation of gluaric and pimelic acid 
in chloroform solution. Chiral recognition occurs in the compleres of the chiral cleft wirh N-Cbz-L-glutamic acid 

Recently, we described the efficient enantioselective complexation of cinchona alkaloids in optically active 

molecular clefts that ate shaped by the major groove of the I,l’-binaphthyl unit and functional&d with one or two 

hydroxy groups.ltl Hydrogen bonding in addition to aromatic-aromatic interactions represent the major bindmg 

forces in the diastereometic complexes that form with qumine and quinidine in chloroform and show differential 

stabilities up to AAGO = 1.0 kcal mol-t. In a search for choral building blocks that provide more ngid, organized 

clefts[21 than l,l’-binaphthyls, we came across the 9,9’-spirobifluorene unit. Previously, Prelog et al ~1 had 

introduced this spacer into optIcally active crown ethers which showed high enantiomer selectivities in the 

complexation of chiral ammonium ions. Here, we describe the synthesis and a preliminary assessment of the 

binding potential of the two 9,9’-spirobifluorene clefts 1 and 2 with amidopyridine residues attached in two 

different ways to their 2,2’-positions for hydrogen bondmg The connectlvtties between the two amidopyndme 

rings and the spacer in 1 are similar to those in 1,4-bis(dmethyl-2-pyridinylammocarbonyl)benzene, a remarkably 

simple yet efficient binder of adipic and glutaric acid recently described by Hamilton et a/.[41 The array of 

hydrogen bonding centers m 2 resembles the binding site configuration in the hellcopodands, chiral non- 

macrocyclic receptors with a helical backbone, that are currently under investigation in our laboratories.[51 

1 

For the synthesis of 1, 2,2’-dicarboxy-9,9’-spirobifluorene[61 was converted with SOC12 (cat. pyridine) 

into the bis(acy1 hahde). The crude material was reacted with 2-amin@6-methylpynde in THF in the presence of 

Et3N to give the colorless diamide 1 (mp > 300 ‘C) in 64% overall yield.[71 For the preparation of 2, the diacetyl 

derivative 3[61 was brominated (Brz, AlC13, CH2CI2, 50 ‘C) to pve 4 in 77% yield. The subsequent Baeyer- 

Vllliger oxidation (m-CPBA, CHC13,O ‘C) afforded 5 (88% yield), which was hydrolyzed to 6 (2N NaOH, 

MeOH; 84% yield). To ensure adequate solubtlity of the cleft, diol 6 was converted in a Wilhamson ether 
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synthesis into 7 (1-iodododecane, K2CO3, DMF, 71% yield). Finally, the boronic ester 8 was prepared from 7 

(BuLi, THF, - 78 ‘C, then (MeO)sB, 20 ‘C) and coupled in a Suzuki reaction with 6-acetamido-2- 

bromopyridme[5J ([(C&)3P]gd, Na2C03, Q,H&I20,8o’C) to yield 2 (mp 147-148 ‘C) in 32% yield. 
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Investigations into the receptor potential of the two clefts 1 and 2 in dry CDC13 at 293 K revealed major 

differences between the two derivatives. Host 1 forms stable solution complexes with selected aliphanc a,w- 

dicarboxylic acids,@] whereas a significant complexation of these guests by 2 was not observed. With a 1.02 x 

10-3 M solution of 1, approximately 0.5 equivalents of solid adipic acid, HOOC-(CH2)4-COOH, which is quite 

insoluble in pure CDC13, are extracted into the liquid phase. As an in&canon for host-guest complexation in this 

solution, the tH NMR resonance of the amide protons on 1 was shifted downfield by 1 .Ol ppm compared to the 

signal of the free host (6 8.27 ppm). The larger solubility of glut&c acid, HOOC-(CH2)+XKIH, and pimelic 

acid, HOOC-(CH2)5COOH, allowed a quantitative evaluation of the stability of their complexes with 1. In tH 

NMR binding titrations at constant host concentration, the complexatlon-induced shifts of selected fluorene and 

pyridine protons were evaluated (Figure 1). Alternatively, the upfield complexation-induced shift of the a-CH2 

resonance was monitored in titrations at constant substrate concentration. The binding data obtained from both 

types of titrations were in satisfactory agreement for each guest. The 1: 1 stoichiometry of the complexes was 

confirmed in the analysis of Job plots.t9] For the l.pimelic acid complex, the association anstant was determined 

as Ka = (1.7 + 0.4) x 103 L mol-1 (AGO = - 4.3 + 0.2 kcal mol-t) Having a Ka = (7.6 f 1.5) x 103 L mol-1 (AGO 

= - 5.2 * 0.2 kcal mol-t), the complex of glutanc acid is significantly more stable. Receptor 1 IS not effective in 

solubilizing and binding succinic acrd, HOOC-(CH2)2-COOH. The spirobifluorene 2 does not form stable 

complexes with any of the dicarboxylic acids, mdependent of their size. For example, at [2] = 1.95 x 10-3 M and 

[pimelic acid] = 8.5 x l&3 M, the amide resonance at the cleft shifts downfield by only 0.3 ppm. 

Figure 1: CompIexation-induced changes in tH NMR chemical shift at saturation binding, A&t @pm; + 
= downfield), calculated for host and guest protons in the l.p~mehc actd complex. 

-0 189 
HOOC-CH,-_(CH2)4-~~~~ 

To gain more insight into the differing complexation properties of 1 and 2, a gas phase conformattonal 

anaJysis of the free clefts and their 1:l complexes with dicarboxylic acids was undertaken. All calculations in this 

ongoing analysis are performed with the all-atom AMBER force field as implemented in the Macromodel 3.0 

program.[loJ Monte Carlo multiple minimum searches are executed with the BATCHMIN routine m the same 
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program. This conformational analysis accurately reproduces the X-ray crystal structure of the adrpic acid 

complex published by Hamilton et n1.[4J 11 

Scheme 1 shows the lowest energy conformations found for a cleft, which is identical to 1 except for the 

addition of two CH30 groups at the remote 7,7’-posrtions, and its complex with pimelic acid. The differences In 

the geometries of free and complexed host are remarkably small.[lt) The guest is bound by four non-ideal 

hydrogen bonds between the two carboxylates and the two amidopyridine residues. To undergo this fourfold 

oriented bonding, pimelic acid adopts a U-type shape with favorable anti-type torsional angles in its extended 

central part and two gauche-type dihedral angles at the termini (Scheme 1). According to the modelmg, the 

complexation by 2 is much weaker since the substrates are unable to undergo fourfold hydrogen bonding while 

maintaining favorable torsional angles in their aliphatic chains.[t*) 

Torsional angles in pimehc acid carbon chain. 
(a) 52.2’; (b) 166.5’. (c) 168.6’; (d) -71 5’ 

Chiral recognition was observed in the complexation between (R,S)-1 and N-benzyloxycarbonyl-L- 

glutamic acid (N-Cbz-Glu). Figure 2 shows the aromatic resonances of host and guest in a solution containmg 

[(R,S)-l] = 9.7 x lOA M and [N-Cbz-Glu] = 3.25 x IO-3 M Drfferential chemical shifts are clearly observed for 

all host resonances in the two stable dtastereomenc complexes that are formed. An tH NMR titration wrth the 

racemic cleft ([(R,S)-I] = 9.7 x 10-4 M and [N-Cbz-Glu] = 0.6 - 6.0 x 10-3 M) provided preliminary evidence for 

different stabilities of the two diastereomeric complexes. In the two complexes, saturation bindmg was reached at 

significantly different concentrattons of N-Cbz-Glu. At the titration endpoint, the cleft amide resonances in the 

two diastereomeric complexes appeared as a very broad signal around 10.83 ppm, as much as 2.54 ppm 

downfield from this resonance in the free receptor. Following opncal resolution[6) of 1, the chrral recognition 

properties of this readily available cleft will be studied in great detail. 
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Figure 2: *H NMR spectra (500 MHz, 293 K, CDCl3) of (A) free (R,S)-1 and (B) of a solution 
containing [(R,S)-1] = 9.7 x 10-4 M and [N-Cbz-Glu] = 3.25 x 10-3 M. 
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