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C O N D I T I O N S  F O R  T H E  E X I S T E N C E  O F  C H A O T I C  

O S C I L L A T I O N S  IN  N U C L E A R  R E A C T O R S *  
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It is shown on the basis o f  point kinetics equations with delayed neutrons that if  the impulse feedback function 

is negative, nonmonotonic, and possesses several maxima and the coefficient of  amplification of  feedback is 

sufficiently large, then chaotic self-excited oscillations o f  the foUowing type arise in nuclear reactors. Neutron 

bursts with random intensity occur in random time interals in the reactor, and the neutron density between the 

bursts oscillates at a low level The rnechanism for  the appearance of  chaos is described and one-dimensional 

mappings which approximately determine the chaotic dynamics are constructed. Three types of  reactors 

(boiling water, with gaseous core. pulsed) where such chaotic oscillations can arise are b~dicated. The results 

obtained point the way to determining other types of  reactors with stochastic behavior 4 figures, 
10 references. 

In [ 1-3], it is shown on the basis of a point kinetics model with no delayed neutrons that chaotic oscillations of the fol- 

lowing type can arise in reactors. Neutron bursts with random intensity arise in a reactor in random time intervals, and the neu* 

tron density in the intervals between these bursts oscillates at a low level. A condition for the appearance of such oscillations is 

that the feedback transfer function - the response of reactivity to a step change in neutron density - must be negative and non- 
monotonic [2, 3]. 

In the present paper, it is shown that similar chaotic oscillations can also arise in reactor models with delayed neutrons. 

However, the condition for their existence is that it is not the transfer but the impulse function - the response of reactivity to a 

pulsed change in neutron density - that must be negative and nonmonotonic. Since dynamic processes in reactors are largely 

determined by delayed neutrons, dynamic chaos in specific types of reactors should be judged according to the properties of the 
impulse function. 

We shall describe the change in neutron density by the kinetics equations 

k 

bi = (1 +n)Sk + Z ~ici -~n, (1) 
i=1 

ci = -~'ici + ~i n ; i = 1 ..... k, (2) 

where n(t) is the relative deviation of the neutron density from a stationary value, l is the lifetime of prompt neutrons, ~k is the 

reactivity, ci(t)/l is the relative deviation of the concentration of nuclei-emitters of delayed neutrons of the ith group from the 
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Fig. 1. Impulse function to0(t) of the form of (6). 

stationary value; k is the number of groups; ~'i is the decay constant of these nuclei; [~i is the relative yield of  delayed neutrons 

k 
as a result of  a fission event; [~ = ~ [ ~ i  ; and t is the time. 

i=1 

We describe linear feedback on reactivity by the equations 

u = P u + d n ;  8 k = b T u ,  (3) 

where u(t), d, b = 0b 0 ~ R m, and P is a constant m • m Hurwitz matrix. 

The transfer function h(t) and the impulse function o~t) for the feedback in (3) are the response 8k(t) to a step n(t) = l(t) 

or impulsive n(t) = &t) perturbation n with u(0) = 0: 

h(t) = bT[exp(Pt)  - / ] p - l d ;  to(t) = dh /d t  = bTexp(Pt )d .  (4) 

It is well known [4, 5] that all solutions of  the system of equations (1)--(3) are bounded, if  

t o ( t ) < 0  for t > 0 .  (5) 

We shall assume that the condition of (5) holds and that both states of  equilibrium of system (1)-(3) are unstable. Under 

these restrictions, steady motions in system (1)--(3) are self-excited oscillations. 

It is shown in this paper that the condition for these oscillations to be stochastic is that o~t) must be nonmonotonic and 

the following condition, which is more stringent than the condition of (5), must hold: 

to0(t) = to(t) - to(O)exp(s0t) < 0 for t > 0, (6) 

where s O < 0 is the eigenvalue of  the matrix P closest to the imaginary axis. It is real, since otherwise condition (5) would break 

down for large t. An example of  the function to0(t) leading to chaos is shown in Fig. 1. The function ~0(t) 

~o(t) = o3(t) + o~O)[h(t)/h(o~) - 1] < 0 for t > 0 (7) 

proves to be close to Eq. (6). 

During self-excited oscillations a reactor can become subcritical (Sk(t) < 0) or supercritical (~&(t) > 0). Chaotic oscillations 

are possible with (~( t )  > 13 for some t) and without (Sk(t) < [3 for all t > 0) the reactor reaching instantaneous kinetics. The first types 

of oscillations are characteristic for fast feedbacks, i.e., feedbacks for which the characteristic variation time of 0Xt) and 8k(t) is com- 

parable to or much less than the characteristic decay time of  delayed-neutron emitters (1Res  i 1= k j  or i R e s  i 1> m.ax~.j ; s i are the 
J 

eigenvalues of  the matrix P). The second types of oscillations occur for small feedbacks ( ] Re s i ] < nfi.'n ~,j ). A mechanism of chaos 
J 
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Fig. 2. Chaotic oscillations of the quantity ~(t) = In[1 + n(t)] (a) and the reactivity 8k(t) (b). 

with instantaneous kinetics is described below. The description of the mechanism of chaos without instantaneous kinetics will be sim- 

ilar, except that the phrase "the reactivity reached 13 and a fission pulse on prompt neutrons has occurred" must be replaced by the 

words "the reactivity has reached zero and the neutron pulse on delayed neutrons has occurred" 

Let the reactivity exceed ~ at a certain moment in time. In this case, the reactor becomes supercritical on prompt neu- 

trons, and a neutron burst (fission pulse) starts. The burst continues as long as 8k(t) > [3, and it stops as a result of the negative 

feedback of (3) for 8k(t) < [~. A sharp drop in neutron density and a transition to slow kinetics occur. After the pulse, the reac- 

tivity in the region ~k(t) < ~ behaves similarly to an impulse function co0(t ) of the form of (6), repeating all inflections and 

extrema. The oscillations of 8k(t) give rise to oscillations of the neutron density at a quite low level, determined by the burst and 

by the delayed neutrons. They continue for a time x until 8k once again reaches [~ and the next neutron pulse occurs. The oscil- 

lations of ~(t) = In [1 + n(t)] and 8k(t), corresponding to the function co0(t) in Fig. 1, are shown in Fig. 2. 

If the function coo(t) is nonmonotonic, then the behavior of  8k(t) after bursts in the region 8/< < 13 is also nonmonoton- 

ic. The same time intervals correspond to the sections of ~owth and decay of the functions 8k(t) and co0(t), irrespective of the 

pulse. The reactivity can then reach the value [3 only on limited sections of increasing function 8k(t), lying to the left of one of 

its maxima. Similar sections and maxima of the function co0(t) and the corresponding time intervals A'C i = ['~i-' "~;] (these inter- 

vals and sections are shown in Fig. 1) correspond to these sections and maxima of ~k(t). In this connection, for a nonmonoton- 

ic function coo(t), the time x between bursts cannot be arbitrary, it must lie within the bounded set of  intervals 8x i. We shall say 

that if 1: ~ Axi, then the next neutron burst is initiated by the ith maximum of the impulse function. In Fig. 2b, the reactivity suc- 

cessively reaches 13 on the maxima of 8k(t) with the numbers 4, 2, 1, 5, 1, 3, 1, 6, and 1. 

The time ~ depends on the intensity of the neutron burst, which we shall characterize by the scalar quantity y. This quan- 

tity is proportional either to the maximum neutron density or the energy released in the reactor over the time of the pulse. The 

larger the value of 7, the larger x is. If  co0(t) is nonmonotonic, then as y increases, ~(y) increases monotonically within the admiss- 

able intervals Ax i and for certain values of Yi, it jumps abruptly from A"c i to A'~i+ 1, i.e., the function x(y) is discontinuous at 7 = Yi- 

When the condition of (6) is satisfied, the values of z are not bounded and as y increases, they run through all intervals Ax i. How- 

ever, if the condition of (6) breaks down and co0(t*) = 0, then for arbitrary y the time "~ does not exceed t*. Then all maxima of 

coo(t) in the region t > t* are blocked, i.e., they cannot give rise to neutron bursts. For this reason, when condition (6) breaks 

down, the chaos mechanism being described also breaks down. 

The intensity of the next burst depends on the derivatives 8k, 8 Jc ... .  with which the reactivity 8k reaches 13 and not on 

the maximum of the impulse function with which the burst is initiated. If ~)k(t) at t = "c touches the line 8k = ~, then 8k = 0 and 

there is no impulse. The larger the value of the derivative with which 8k(t) crosses the value [$, the larger the value of y* of the 

next impulse is. Impulses initiated by the same ith maximum of coo(t) with t ~ Ax i = [~-, xT] can take on very diverse values. 

Conversely, impulses caused by different maxima can be identical. We denote by F i = {y : y = "[*(x); "c ~ Axi} a series of impuls- 

es engendered by the condition 8k(t) = ~ being satisfied on the ith maximum of co0(t). The next impulse can be judged accord- 

ing to the derivatives of the impulse function, which approximately correspond to the derivative of 8k at the moment x. The 

impulse is larger for those ~ ~ A"c i for which ~00(z) is larger. For coo(t) in Fig. 1, the impulse grows with x increasing from x = x~- 

to x = xT. In the general case, we have 
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~* = ~*( , )  = f [ & ( T ) ,  8k(~),...1 =- f[cbo(Z), /6o(Z) . . . .  1, (8) 

i.e., me next burst depends on the time between the bursts. Substituting the function x(y) into Eq. (8), we obtain the one-dimen- 

sional mapping 

y* = ~(y)  = tp(7), (9) 

which determines the next burst according to the preceding burst. 

We shall now determine the conditions under which the oscillations arising will be stochastic. It is well known that 

dynamical chaos is realized in a situation where all motions of the system, being globally bounded, are at the same time unsta- 

ble. In our case, the condition of (5) ensures boundedness. Instability of motions will arise in situations when the series of bursts 

F i proliferates, i.e., each series F i engenders in the next cycle several different series Fj and not just one series. This means that 

after impulses of one (any) series Fi, engendered by the ith maximum of the function co0(t), the time x up to the next burst will 

lie in several intervals ATj = [xf, xf], so that the next impulses can be engendered by several maxima of the function co0(t), i.e., 

they can belong to several series of impulses Fj. In this case, there arise chaotic oscillations during which, together with the next 

impulse T and the time T between bursts, the series F i to which the impulse belongs, the interval AT i to which x belongs, and the 

corresponding interval AT i of  the maximum of the function co0(t) that gives rise to the next impulse are all random. 

We note that the intensity of neutron bursts which is required for the series F i of impulses to proliferate and the chaos 

mechanism being described to appear wilt be attained in the case of fast feedbacks for sufficiently large values of ~(0)/co(0) 

and the coefficient of amplification of the feedback 0(~k = 0bTu). An increase of 0 at first gives rise to instability of the point 

M o = 0 and then to chaos according to one of the known scenarios. 

The proliferation of  the series of impulses can be represented as a graph with vertices F 1, F 2 ..... F N and edges y~, direct- 

ed from F i to Fj only if the series of impulses from F i engenders pulses from Fj. Motion along the edges of a graph corresponds 

to a semiinfinite sequence F/I, Fi2 . . . . .  Fire . . . .  (a path on the graph). If the set of  paths on the graph does not reduce to a finite 

number of closed contours or a periodic repetition, then a continuum of different paths exists. Each unstable trajectory corre- 

sponds to its own path {Fi} and a corresponding sequence of intervals {ATi} = AT/l. AT(2 ... . .  ATim . . . .  Moreover, for each path 

{ 1"i} there exists an unstable trajectory which engenders the path. If the continuous set of all such unstable (saddle) motions is 

attractive, then it forms a chaotic (strange or quasihyperbolic) attractor within which stochastic self-excited oscillations occur. 

A strict substantiation of what has been said above can be obtained by analyzing the multidimensional Poincard map- 

ping, using the general methods, developed in [6, 7], for analyzing such mappings. In the present paper, we shall confine our- 

selves to constructing and analyzing one-dimensional mappings of the type of  (9), whose stochasticity serves as an approximate 

criterion for chaos in the system under study and whose properties determine the properties of the chaotic oscillations. 

Let us consider a ray L0(Y) emanating from the point u 0 in the direction of the vector g and lying in the plane 

8k = b ru  = 13 (bruo = 13, b r g  = 0): 

L0(Y) = {n, ciu: n = n o =const ;  c i = 13i~ u = u 0 + "~g}; 

u o = 13(P-Id)/(bTp-1d); g = d - (b/ 'd)(p-ld)/(bTp-ld),  (10) 

where y is the coordinate along the ray. It corresponds to a neutron burst, since after the impulse the trajectory lies on the sur- 

face 8k = 13 at a point whose projection on L 0 is proportional to the impulse. 

The trajectories of  system (1)-43), which start on the ray L0(Y) and enter the region 8k < I~, will once again after a time 

x(y) end up on the surface 8k = [3 at the points TI(L0(y)). Then they emerge into the region 8k > 13 and return onto the surface 

8k = 13 at the points T2[TI(Lo(Y))] = T(L0(y)). The ray L 0 thereby transforms first into the curves TI(L0(y)) and then into the curves 

T(L0(Y)), lying, just like the ray L 0, in the plane 8k = 13. We obtain a mapping of the form (9) by projecting T(L O) onto L 0. 

If the condition (6) is satisfied and co0(t) is nonmonotonic, then the functions T(y) and ~(y)  are discontinuous, and the 

mappings TI(L0) and T(Lo) cons!st of several curves. The characteristic forms of the function x(y), and the images TI(L0) and 

T(L 0) in projection on the 8k, 8k plane, and the mapping y*(y) are shown in Figs. 3 and 4a. The mapping 7*(Y) will have sev- 

eral intervals of continuity AYi = (Yi-t, Yi) according to the number of maxima of co0(t). Reaching the value AYi signifies that the 
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Fig. 3. "c(y) on the ray L 0 (a) and the images TI(Lo) and T(L O) of the ray L 0 (b). 
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Fig. 4. One-dimensional mapping of the ray L 0 into L 0 (a) and the pairs (y~+l, y~) of  

successive points of  intersection of the surface 8k = ~ by the chaotic trajectory in the 

projection on the my L 0 (b). 

next neutron impulse will belong to the ith series F i. The graph described above is constructed according to y*(y). The vertices 

of the graph are the intervals ATi. The edges ~). connect ATi with Ayj, if  the mapping F i = y*(AYi) intersects Ayj. 

A change in the coefficient of intensification of feedback 0 changes the scale in the mapping y (Y) along the ordinate. 

For sufficiently large 0, there arises a situation where y*(y) transforms into itself an interval Ay = [Y0, YN], it possesses on this 

interval several intervals of  continuity AYi, and is a stretching mapping at each point fly, with the exception, possibly, of small 

segments. Such mappings are stochastic, and this also makes the self-excited oscillations in system (1)-(3)  stochastic. 

The main qualitative features of the function "c(y) and the mapping TI(L 0) are preserved if the feedback along n is bro- 

ken in Eq. (3), setting n = -1 .  In this case, for trajectories starting at L 0, we have u(t) = p - l d  + exp(Pt)[u 0 - p - I d  + yg], and we 
obtain ~'~) from the condition bTu = ~: y(x) = [~ - bTp- ld  - bTexp(Px) (u0 - p-ld)]/[bTexp(P'Og]. 

Using relations (4), (7), and (10) for co(t), h(t), ~0(t), u 0, and g, we obtain the function y('c) and the projection TI(L 0) 

onto the 8k, 8k plane in the form 

y( x) =[~/ h(~)+ l]h(x)/-~o(X); h(~)=-b T p-ld; (11) 

~k('~) = bTfi('C) = -~('t:)[13/h(oo) + 1] + y('c)~0(1:); (12) 

"~k(x) = bTii('c) = -~('c)[13/h(,~) + 1] + y(x)~0(z) .  (13) 

We obtain the function z(y) as the inverse to function (11). For a nonmonotonic function co0(z), y(z) will  be nonmonotonic and 

"~(y) wil l  be discontinuous. The minimum values of "c corresponding to y should be taken for "c(y). 
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We obtain a model analytic mapping ),*(~') from the condition (8), using derivatives (12) and (13). In the simplest case, 

we obtain 

T* (7) = 08k[x(T)] = O{-0)['l:(~/)](l~ / h(oo) + 1) + ~ 0  [z(T)] }; ~ = const .  (14) 

The expressions for Y*(T) employ only the explicit form of the functions o~(x), h(x), ~0(x), ~0( ' r ) .  When the condition (7) is 

satisfied, ~0(t) is nonmonotonlc, and 0 is sufficiently large, the mappings (11) and (14) are stochastic and explain qualitative- 

ly correctly the appearance of chaos in the reactor models in system (1)--(3). 

We shall now determine the structure of Eqs. (3) that is required for chaos. A substitution of variables puts the system 

(3) into the form 

J = S o ( x - n ) ;  2~=By+dx ;  8 k = a x + 0 b T y ,  (15) 

where x(t) ~ RI; y(t), b 0, d ~ Rm-l; a, 0 = const; s o < 0 is the leading (closest to the imaginary axis) real eigenvalue of  the 

matrix P. In the case (15), the function (%(0 of the form (6) is the response 0b0Ty to an impulsive change n(t) = 8(t) with 

x(0) = y(0) = 0. The function o0(t) is nonmonotonic and negative i f  the transfer function ho(t) = 0bT[exp(Bt) - / ] B  -1 d from x 

to 0b0Ty has the same properties. For  these properties and sufficiently small l a I, an increase of  0 inevitably leads to the 

above-described mechanism of chaos in system (1), (2), and (15). 

If the spectrum of the matrix B consists of several eigenvalues ot i • i(o i, ot i < 0, o) i > 0, then system (15) becomes 

(m-l)/2 

J = So(X-n);  8 k = a x + 0  Z (biYi +CiT.i); (16) 
i=1 

Yi = (xiYi -~ -(xix;  zi =~ +(xizi -t-~ i = 1  .... .  ( m - l ) / 2 .  (17) 

The condition ho(t) < 0 and co0(t) < 0 for system (16) and (17) holds, for example, if 0 > 0; b i < O, c i = 0, i = 1 . . . . .  (m - 1)/2. 

The functions ho(t) and co0(t ) are nonmonotonic for sufficiently small 0 < -'4Xi/O~ i < 0.3. 

We note that the curves in Figs. 1--4 correspond to system (1) and (2) in the case of feedback (16) and (17) with one oscil- 

latory link (17) (m = 3) andthepammeterss0=--0 .25;  C t l = - l ;  o~l= 10; a = c l = 0 ;  0bl = - 0 . 1 9 5 ; 1 =  10-4sec;~,l =0 .012sec - l ;  

= 0.03 sec-l; ~'3 = 0.111 sec-1; ~'4 = 0.301 sec-l; k 5 -- 1.14 sec-l ;  X 6 = 3.01 sec-t; [31/13 = 0.033; [32/~ = 0.219; 133/13 = 0.196; 

134/1~ = 0.395; 135/13 = 0.115; 136/[5 = 0.042; 13 = 0.0065. 

The functions ~(7) and y*(y) and the images TI(L0) and T(L O) for the ray (10) (n o = 0) were constructed numerically 

using the trajectories of the system. The chaotic trajectory and the successive points (n k, c~, x k, yp, zl k) of intersection of  the tra- 

jectory and the surface 8k = [~, k = 1 . . . . .  6000 from above (after the impulse) were obtained numerically. These points are pro- 

jected onto the ray L 0 (,/k = 4x k + 10z~ + 0.192), and the projections ,/k obtained are plotted in the (~+1, y~) plane in Fig. 4b. The 

points cluster near the branches of  the mapping ~t Q/) m Fig. 4a; this indicates that the one-dimensional approximation for chaot- 

ic motions is admissable. 

We note that in [8] Eqs. (16) and (17) with m = 3 were used to describe feedbacks in models of a boiling water reac- 

tor. For specific parameters of the reactor, it is shown in [8] that an increase of 0 results in chaotic oscillations. However, their 

mechanism is different from the one considered in the present paper. It is a well-known mechanism associated with the presence 

of a homoclinic loop of a saddle-focus equilibrium state M 0 = 0 [6, 7]. It occurs in the absence of  maxima in the function co0(t) 

and when the value --~t/co 1 is sufficiently large (---~l/C01 > 0.4). 

The equations for the feedbacks in reactor models with a gaseous core can also be put into the same form (16), (17) 

with m = 3 [9]. As shown in [9], the acoustic self-excited oscillations arising in such reactors can be stochastic. Depending on 

the paramters of the reactor, the chaos mechanism found in the present work and the chaotic oscillations similar to those con- 

sidered in [8] can arise. 

For an appropriate choice of feedbacks on reactivity, the type of chaotic oscillations examined here can be obtained in 

pulsed reactors. A different mechanism of  chaos in such reactors has also been found and studied in [ 10]. In accordance with 

this mechanism, generation of impulses occurring in equal time intervals and stochasticity of  their energy occur not only as a 
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result of the action of internal feedbacks on reactivity (as in the present paper), but primarily as a result of the external modula- 

tion of reactivity with a prescribed period. 

In conclusion, we note that the results obtained in this work point the way to determine other types of reactors where 

stochastic self-excited oscillations can arise. For small amplitudes, they can serve as a steady operating regime of a reactor. The 

results obtained make it possible to determine the region of stochasticity and to choose reactor parameters so as to obtain a 

stochastic regime, if it is desirable, and conversely to avoid such a regime, if the characteristics of chaotic oscillations are unsat- 

isfactory from the standpoint of reactor operation. 
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