Synthetic Studies toward the Bicyclic Peroxylactone Core of Plakortolides

Bogdan Barnych, Jean-Michel Vatèle*

Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Equipe SURCOOF, bât. Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France E-mail: vatele@univ-lyon1.fr

Received 11 April 2011

Abstract: En route to the synthesis of plakortolide E and I, we prepared a β -hydroperoxy vinyl epoxide, obtained from (*R*)-epichlorhydrin in 13 steps and 30% yield, via chemoselective methylenation with Nysted reagent in the presence of Ti(O*i*-Pr)₂Cl₂ and regioselective Mukaiyama–Isayama hydroperoxysilylation. Unexpectedly, acid-catalyzed cyclization of this peroxy epoxide occurred exclusively through a 5-*exo* mode to furnish a 1,2-dioxolane; this is in contrast to the behavior of hydroxy analogues.

Key words: cyclization, endoperoxides, hydroperoxysilylation, plakortolides

Marine sponges of genus *Plakortis* and *Plakinastrella* are a prolific source of cyclic peroxides, many of which exhibit antifungal, antitumor, and antiparasitic activities.¹ The majority of these natural products contain six-membered peroxide structure (1,2-dioxane). Plakortolides, one of the family of secondary metabolites found in these sponges, have an aromatic unit connected via a methylene chain to a bicyclic 4,6-dimethyl peroxylactone ring system.² They differ in absolute and relative configuration at C-3, C-4, C-6, the substitution pattern, the level of unsaturation, and of the chain length. A representative sample of plakortolides is depicted in Figure 1.

Figure 1 Representatives examples of plakortolides

A survey of the literature showed only one racemic synthesis of a member of plakortolides: plakortolide I (2) has been reported.³ [4+2] Photocycloaddition of singlet oxygen to a diene and iodolactonization are the key steps for the construction of the peroxylactone framework of plakortolide I. A drawback of this strategy is the lack of ste-

SYNLETT 2011, No. 13, pp 1912–1916 Advanced online publication: 21.07.2011 DOI: 10.1055/s-0030-1260959; Art ID: D11211ST © Georg Thieme Verlag Stuttgart · New York reochemical control at the newly formed stereogenic centers.

In connection with our interest in exploiting the directing effect of a double bond in the regiocontrol of intramolecular cyclization of hydroxy epoxides via disfavored 5- or 6-*endo*-tet modes according to Baldwin's rules,⁴ to prepare substituted furans or pyrans,⁵ we wondered if this concept could be applied to the synthesis of 1,2-dioxanes by cyclization of β -hydroperoxy vinyl epoxides. There are only few examples in the literature for the formation of a 1,2-dioxane ring system by cyclization of hydroperoxy epoxides.⁶ This strategy of 1,2-dioxane ring forming has been successfully applied to the synthesis of natural-product-containing endoperoxides such as yingzhaosu C^{6b} and dihydroplakortin.^{6d,e} In all cases, the cyclization proceeded via a 6-*exo* mode following Baldwin' rules.

The feasibility of our approach to the 4,6-dimethylperoxylactone framework of plakortolides, based on *anti*-Baldwin cyclization of β -hydroperoxy vinylepoxides, was tested on the structurally most simple plakortolides: plakortolides E (1)⁷ and I (2). These two compounds were isolated in minute amounts (3·10⁻⁴% for 2) from the sponge *plakortis sp.*^{2c,h} Plakortolide E (1) has potent and selective activity against melanoma and breast tumor cell lines (LC₅₀ < 1 μ M);^{2c} no biological activity has been reported for 2.

Scheme 1 Retrosynthetic analysis of plakortolide E (1) and plakortolide I (2)

In the retrosynthetic analysis of **1** and **2** (Scheme 1), we took into account the low stability of the O–O bond $(\Delta H_f = -33 \text{ kcal/mol for } 1,2\text{-dioxane})^8$ and its susceptibility to reducing agents as well as nucleophiles and bases (Scheme 1).⁹ Obviously, the hydroperoxide functionality has to be introduced at the late stage of the synthesis.

Scheme 2 *Reagents and conditions*: (a) Ph(CH₂)₉MgBr (1.3 equiv), CuCN (0.1 equiv), THF, -78 °C, 2 h; (b) NaOH (5 equiv), THF, r.t., 4 h, 79% for 2 steps; (c) ethyl propiolate (3 equiv), THF, -90 °C, *n*-BuLi (3 equiv), 20 min, BF₃·OEt₂ (3 equiv) then **8**, -78 °C to r.t., 98%; (d) Me₂CuLi (3 equiv) then **10**, THF, -78 °C, 0.5 h; (e) PTSA (0.1 equiv), MeOH, r.t., 4 h, 84% for 2 steps; (f) H₂O₂ (30%, 3.5 equiv), NaOH (6 N, 0.6 equiv), MeOH, 0 °C to r.t., 3 h, 82%; (g) DIBAL-H (1.1 equiv), toluene, -78 °C, 0.5 h, quant.; (h) NaBH₄ (2 equiv), EtOH, r.t., 4 h, 95%; (i) (COCl)₂ (8 equiv), DMSO (16 equiv), CH₂Cl₂, -78 °C, 1 h, then Et₃N (16 equiv), 50%; (j) CH₂=PPh₃, THF, -78 °C to r.t.; (k) CpTiMe₂ (4 equiv), toluene, 80 °C, 6 h.

Among the different existing methods to incorporate the hydroperoxide group, we chose the hydroperoxysilylation of alkenes developed by Mukaiyama and Isayama.¹⁰ This cobalt-mediated reductive oxygenation of double bonds is a particularly mild and regioselective method^{10a,11} which can be effected in the presence of a large number of functional groups.^{6b,d,e,12} Disconnection of C₃–O and C₁–O within 1 and 2, guided by our strategy of 6-endo ring closing of hydroperoxy epoxide directed by a vinyl group (a synthetic equivalent of a carboxymethyl group), revealed the vinyl epoxide 5, which itself could arise from the epoxy diene 6 via regioselective hydroperoxysilylation. Epoxide 6 could originate from the unsaturated lactone 7 by a diastereoselective epoxidation after conventional functional adjustments. We believed intermediate 7 could be prepared from commercially available (R)-epichlorohydrin (9) via epoxide 8.

Synthesis of plakortolides 1 and 2 commenced by a copper-catalyzed epoxide ring opening of (R)-epichlorohydrin (9) with (9-phenylnonyl)magnesium bromide¹³ followed by treatment of the resulting chlorohydrin with NaOH to give the epoxide 8 in 79% yield (Scheme 2). Compound 8 was regioselectively opened with the lithium salt of ethyl propiolate, in the presence of $BF_3 \cdot OEt_2$,¹⁴ to provide the secondary alcohol 10 in nearly quantitative vield. Stereoselective addition of lithium dimethylcuprate¹⁵ to the triple bond and subsequent lactonization of the resulting Z-enoate with p-toluenesulfonic acid in methanol at room temperature furnished the lactone 7 in 84% overall yield. Exposure of 7 to alkaline hydrogen peroxide in methanol gave the epoxide 11, as a single diastereomer, in 82% yield. This trans-selective epoxidation of pentenolides is well precedented.¹⁶ After DIBAL-H reduction of 11 to lactol 12, the stage was now set up to introduce the double bond in the α -position to the oxirane functionality. In order to attain this goal, reduction of the lactol 12 with NaBH₄ followed by Swern oxidation provided the ketoaldehyde 13 in 47% overall yield. Unfortunately, in the presence of an excess of methylenetriphenylphosphorane or Petasis reagent,¹⁷ compound **13** led exclusively to decomposition.

A new strategy was devised to introduce the two double bonds in a stepwise manner and was based on the ability of titanium carbenoid reagents to effect, under mild conditions, chemoselective methylenation of ketones in the presence of esters¹⁸ (Scheme 3). A one-pot saponification of the lactone function of **11** followed by RuO_4 oxidation¹⁹ of the resulting hydroxy sodium carboxylate gave, after diazomethane esterification, the keto ester **14** in nearly quantitative yield. Monomethylenation of **14** turned out to be somewhat troublesome as seen in Table 1.

In the presence of methylene triphenylphosphorane or using the Lombardo protocol,²⁰ only polar products were formed (Table 1, entries 1, 2). In the latter case, Ti(III) present in the reaction medium is known to act as a reducing agent to form pinacol-type byproducts.²¹ In the presence of the Tebbe reagent, compound **14** gave **15** in low yield (Table 1, entry 3).²²

Exposure of **14** to Petasis reagent and its catalyzed version²³ afforded about a 1:1 mixture of mono- and dimethylenation products (Table 1, entries 4, 5). Next, we turned our attention to another *gem*-bimetallic reagent: the Nysted reagent.²⁴ Thus, keto ester **14**, treated with Nysted reagent and TiCl₄, afforded **15** in a low yield due to decomposition (Table 1, entry 6). The use of an equal mixture of TiCl₄ and Ti(*i*-OPr)₄²¹ in combination with Nysted reagent improved considerably the yield of **15** (Table 1, entry 7).²⁵ Having attained our challenging target, its transformation to **6** was effected in 83% yield via standard functional manipulations.

The stage was thus set for the chemoselective peroxidation of epoxydiene **6**. The best results, in terms of yield and chemoselectivity, were obtained by reaction of **6** with oxygen and triethysilane in dichloroethane, in the presence of bis[2,2,6,6-tetramethylheptane-3,5-dienoate Co(II)] [Co(thd)₂]¹¹ and by stopping the reaction at about 80% of conversion in order to avoid the bisperoxidation. The unseparable mixture of **6** and **16**, purified through a short pad of silica gel for removing the catalyst, was treated with strongly acidic resin Amberlyst-15 which effected cleavage of the TES group and concomitant cyclization to afford exclusively the 5-*exo*-cyclized product **17** in 51%

Study of the Regioselective Methylenation of Keto Ester 14 Table 1

os	$ \begin{array}{c} $		0 15	le H_{10}^{Ph} of B	Me H ₁₀ Ph		
Entry	Reagents	Temp (°C)	Time (h)	Yield of $14 (\%)^a$	Yield of A (%)	Yield of 15 (%)	Yield of \mathbf{B} (%)
1	Ph ₃ P=CH ₂	-78 to r.t.	3	_b	-	-	-
2	Zn, CH ₂ Br ₂ , TiCl ₄	0 to r.t.	4	_b	-	-	-
3	Cp ₂ TiClCH ₂ AlMe ₂	-78 to r.t.	14	-	-	23	-
4	Cp ₂ TiMe ₂	80	21	22	3°	34	41
5	Cp_2TiMe_2 , Cp_2TiCl_2 cat.	80	6	21	3°	31	27
6	TiCl ₄ , Nysted reagent	0 to 15	1	-	-	35	-
7	Ti(Oi-Pr) ₂ Cl ₂ , Nysted reagent	0 to 15	0.25	15	-	70	-

^a Isolated yield.

^b Only decomposition was observed.

^c Determined by ¹H NMR.

Scheme 3 Reagents and conditions: (a) NaOH (2 equiv), MeOH, r.t., 2 h, then evaporation in vacuo; (b) RuCl₃ (0.05 equiv), NaIO₄ (3 equiv), K2CO3 (2 equiv), H2O, r.t., 2-3 h; (c) CH2N2 (1.2 equiv), Et2O, r.t., 10 min, 96% for 3 steps; (d) Nysted reagent (3 equiv), Ti(Oi-Pr)2Cl2 (2.5 equiv), THF, 0-15 °C, 15-20 min, 70%; (e) DIBAL-H (5 equiv), toluene, -78 °C, 40 min; (f) Ph₃PMeBr (5 equiv), n-BuLi (4 equiv), THF, 0 °C then aldehyde, 30 min, 83% for 2 steps; (g) Co(thd)₂ (0.1 equiv), O₂ (1 atm), Et₃SiH (1.2 equiv), DCE, r.t., silica gel filtration, 80% conversion (% determined by ¹H NMR); (h) Amberlyst-15 (0.5 equiv), CH₂Cl₂, r.t., 3 h, 51% from 6; (i) TBAF (1.3 equiv), THF, r.t., 0.5 h; (j) Amberlyst-15 (0.5 equiv), CH₂Cl₂, r.t., 3 h, 17% from 6; (k) HCl (12 M, 6 equiv), MeCN, r.t., 5 h, 30% from 6.

yield.²⁶ The structure of **17**, obtained as a 1:1 mixture of diastereomers, was ascertained by 2D NMR experiments (HMBC, HSQC, NOESY). A stepwise procedure for the formation of endoperoxide 17 involving the deprotection of the TES group with NBu₄F affording 5 and acid-promoted ring closure in the presence of Amberlyst-15 or 12 N HCl in acetonitrile²⁷ gave **17** in lower yields than in the one-pot reaction. As in literature precedents for hydroxy and protected amino vinyl-cis-epoxides, the cis configuration seems to disfavor the 6-endo ring closure perhaps because these systems cannot assume the planar arrangement necessary for maximum stabilization in the transition state, perhaps because of steric interactions.²⁸

Finally, we tested another strategy based on the expectations that a peroxy anion derived from a δ -hydroperoxy epoxy ester such as 18 should undergo a cylization at the less hindered and more electrophilic position of the oxirane, namely at the C-2 position (Scheme 4).

Scheme 4 Reagents and conditions: (a) Co(thd)₂ (0.1 equiv), O₂ (1 atm), Et₃SiH (2 equiv), DCE, r.t., 3-4 h, 86%; b) K₂CO₃ (0.3 equiv), MeOH, 0 °C, 3 h, 75%.

Regioselective hydroperoxysilylation of the gem-disubstituted olefin of 15 under Mukaiyama and Isayama conditions yielded a 1:1 diastereomeric mixture of the triethylsilylperoxy ester **18** in 86% yield. Treatment of **18** with a catalytic amount of potassium carbonate gave, after TES cleavage, again exclusively a 1,2-dioxolane derivative: **19a,b**, obtained in a good yield as a mixture of diastereomers, separable by preparative TLC. Compounds **19** are structurally closely related to plakinic acids of general formula **20** (Figure 2). These natural products, isolated from sponges of the family Plakinidae, display cytotoxicity against fungal and cancer cell lines.^{2e,h,29}

In summary, during the study of plakortolide synthesis we have shown that cyclization of β -hydroperoxy vinyl-cisepoxides occurred only via a 5-exo mode, unlike hydroxy analogues, to give 1,2-dioxolanes. In this case, the vinyl group has no directing effect. We also described a modification of the method of methylenation of Matsubara et al., using Nysted reagent and a mixture of TiCl₄ and Ti(*i*-OPr)₄, which allowed the chemoselective methylenation of a keto ester in the presence of sensitive functional groups such as epoxides. Extension of the Mukaiyama and Isayama peroxygenation method to the diene 6 allowed the introduction of the hydroperoxide function regio- and chemoselectively. Finally, cyclization of hydroperoxy keto ester 18 furnished 3,5-dimethyl-1,2-dioxolane ester, structure closely related to plakinic acid natural product family 20. Studies are under way in our laboratories to apply this strategy to the synthesis of some of these members such as andavadoic acid (20a).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

B.B. thanks the 'French Ministère de la recherche et de l'Enseignement Supérieur' for a PhD grant.

References and Notes

- (a) Casteel, A. N. *Nat. Prod. Rep.* **1999**, *16*, 55. (b) Rahm,
 F.; Hayes, P. Y.; Kitching, W. *Heterocycles* **2004**, 523.
- (2) (a) Davidson, B. S. *Tetrahedron Lett.* **1992**, *32*, 7167.
 (b) Horton, P. A.; Longley, R. E.; Kelly-Borges, M.; McConnell, O. J.; Ballas, L. M. *J. Nat. Prod.* **1994**, *57*, 1374. (c) Varoglu, M.; Peters, B. M.; Crews, P. *J. Nat. Prod.* **1995**, *58*, 27. (d) Qureshi, A.; Salva, J.; Harper, M. K.; Faulkner, D. J. *J. Nat. Prod.* **1998**, *61*, 1539. (e) Williams, D. E.; Allen, T. M.; Van Soest, R.; Behrisch, H. W.; Andersen, R. J. *J. Nat. Prod.* **2001**, *64*, 281. (f) Perry, T. L.; Dickerson, A.; Khan, A. A.; Kondru, R. K.; Beratan, D. N.;

Wipf, P.; Kelly, M.; Hamann, M. T. *Tetrahedron* 2001, *57*, 1483. (g) Chen, Y.; Killday, K. B.; McCarthy, P. J.;
Schemoler, R.; Chilson, K.; Selitrennikoff, C.; Pomponi, S. A.; Wright, A. E. *J. Nat. Prod.* 2001, *64*, 262. (h) Rudi, A.;
Afanii, R.; Gravalos, L. G.; Aknin, M.; Gaydou, E.; Vacelet, J.; Kashman, Y. *J. Nat. Prod.* 2003, *66*, 682. (i) Jimenez-Romero, C.; Ortiz, I.; Vincente, J.; Vera, B.; Rodrigue, A. D.; Nam, S.; Jove, R. *J. Nat. Prod.* 2010, *73*, 1694. (j) Yong, K. W. L.; De Voss, J. J.; Hooper, J. N. A.; Garson, M. J. *J. Nat. Prod.* 2011, *74*, 194.

- (3) Jung, M.; Ham, J.; Song, J. Org. Lett. 2002, 4, 2763.
- (4) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
- (5) Doan, H. D.; Gallon, J.; Piou, A.; Vatèle, J.-M. Synlett 2007, 983.
- (6) (a) Porter, N. A.; Funk, M. O.; Gilmore, D.; Isaac, R.; Nixon, J. J. Am. Soc. 1976, 98, 6000. (b) Xu, X.-X.; Dong, H.-Q. J. Org. Chem. 1995, 60, 3039. (c) Ushigoe, Y.; Masuyama, A.; Nojima, M.; McCullough, K. Tetrahedron Lett. 1997, 38, 8753. (d) Gemma, S.; Marti, F.; Gabellieri, E.; Campiani, G.; Novellino, E.; Butini, S. Tetrahedron Lett. 2009, 50, 5719. (e) Gemma, S.; Gabellieri, E.; Campiani, G.; Marti, F.; Taglialatela-Scafati, O.; Novellino, E.; Campiani, G.; Butini, S. J. Org. Chem. 2010, 75, 2333.
- (7) In a recent paper on the isolation and structure elucidation of new plakortolides, Yong et al.^{2j} compared the NMR data of newly isolated plakortolides and plakortolide E. They noted inconsistencies between the reported structure of plakortolide E and of its ¹H NMR and ¹³C NMR data.^{2c} They suggested that these data are those of seco-plakortolide E.
- (8) Hay, T. S.; Yamada, T.; Tsai, P. L.; Buzzelli, J. W. J. Phys. Chem. A 1997, 101, 2471.
- (9) (a) Saito, L.; Nittala, S. S. In *The Chemistry of Peroxides*; Patai, S., Ed.; Wiley: Chichester, **1983**, 311. (b) Dussault, P. H.; Eary, C. T.; Woller, K. R. *J. Org. Chem.* **1999**, *64*, 1789. (c) Szpilman, A. M.; Korshin, E. E.; Hoss, R.; Posner, G. H.; Bachi, M. D. *J. Org. Chem.* **2001**, *66*, 6531. (d) Jin, H.-X.; Liu, H.-H.; Zhang, Q.; Wu, Y. *J. Org. Chem.* **2005**, *70*, 4240. (e) Griesbeck, A. G.; Cho, M. *Tetrahedron Lett.* **2009**, *50*, 121.
- (10) (a) Isayama, S.; Mukaiyama, T. *Chem. Lett.* **1989**, 573.
 (b) Isayama, S. *Bull. Chem. Soc. Jpn.* **1990**, *63*, 1305.
- (11) O'Neill, P. M.; Hindley, S.; Pugh, M. D.; Davies, J.; Bray,
 P. G.; Park, B. K.; Kapu, D. S.; Ward, S. A.; Stocks, P. A. *Tetrahedron Lett.* **2003**, *44*, 8135.
- (12) (a) Oh, C. H.; Kim, H. J.; Wu, S. H.; Won, H. S. *Tetrahedron Lett.* **1999**, *40*, 8391. (b) Tokuyasu, T.; Kunikawa, S.; McCullough, K. J.; Masuyama, A.; Nojima, M. *J. Org. Chem.* **2005**, *70*, 251. (c) Silva, E. M. P.; Pye, R. J.; Cardin, C.; Harwood, L. M. *Synlett* **2010**, 509.
- (13) Görgen, G.; Boland, W.; Preiss, U.; Simon, H. *Helv. Chim. Acta* **1989**, *72*, 917.
- (14) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
- (15) Corey, E. J.; Katzenellenbogen, J. J. Am. Chem. Soc. **1969**, *91*, 1851.
- (16) For examples of substituted pentenolide epoxidation, see:
 (a) Takano, S.; Shimazaki, Y.; Sekiguchi, Y.; Ogasawara, K. Synthesis 1989, 539. (b) Yadav, V. K.; Kapoor, K. K. Tetrahedron 1995, 51, 8573. (c) Reddy, M. V. R.; Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 2001, 624, 239. (d) Sawant, K. B.; Jennings, M. P. J. Org. Chem. 2006, 71, 7911. (e) Ding, J.; Jennings, M. P. J. Org. Chem. 2008, 73, 5965.
- (17) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
- (18) For a review on titanium carbenoid reagents, see: Hartley, R. C.; Li, J.; Main, C. A.; McKierran, G. J. *Tetrahedron* 2007, 63, 4825.

Synlett 2011, No. 13, 1912–1916 © Thieme Stuttgart · New York

- (19) Lee, D. G.; Congson, L. N.; Spitzer, U. A.; Olson, M. E. Can. J. Chem. 1984, 62, 1835; and references cited therein.
- (20) (a) Lombardo, L. *Tetrahedron Lett.* **1982**, *23*, 4293.
 (b) Lombardo, L. *Org. Synth.* **1987**, *65*, 81.
- (21) Okazoe, K.; Hibino, J.-I.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5581.
- (22) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. **1978**, 100, 3611.
- (23) For Cp₂TiCl₂-catalyzed methylenation with Petasis reagent, see: Payak, J. F.; Huffman, M. A.; Cai, D.; Hughes, D. L.; Collins, P. C.; Johnson, B. K.; Cottrell, I. F.; Tuma, L. D. Org. Process Res. Dev. **2004**, *8*, 256.
- (24) (a) Tochtermann, W.; Bruhn, S.; Meints, M.; Wolff, C.; Peters, E. M.; von Schnering, H. G. *Tetrahedron* 1995, 51, 1623. (b) Matsubara, S.; Sugihara, M.; Utimoto, K. *Synlett* 1998, 313.
- (25) Procedure for the Chemoselective Methylenation of Compound 14
 - To a stirred solution of ketone **14** (0.219 g, 0.585 mmol) in dry THF (8 mL) was added Nysted reagent (20% in THF, 3.51 mL, 1.83 mmol), purchased from Aldrich, at 0 °C under N₂ atmosphere followed by dropwise addition of TiCl₂(Oi-Pr)₂ (2. 5 equiv), prepared from TiCl₄ (1 M in CH₂Cl₂; 0.73 mL, 0.73 mmol) and Ti(Oi-Pr)₄ (0.217 mL, 0.73 mmol). The reaction mixture was then allowed to reach 15 °C and stirred for 15 min. The reaction mixture was cooled to 0 °C, treated carefully with H₂O (1 mL) and extracted with Et₂O (5 × 8 mL). The combined organic layers were washed with sat.

NaHCO₃ solution and brine. The ethereal solution was filtered through a small pad of silica gel to remove metal species, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed on silica gel (Et₂O–PE, 1:5) to furnish **15** (0.153 g, 70%) as a colorless oil; $[\alpha]_D^{20}$ –29.2 (*c* 1, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 1.26 (br, m, 14 H), 1.38 (s, 3 H), 1.60 (m, 2 H), 1.95 (m, 2 H), 2.35 (d, *J* = 15 Hz, 1 H), 2.41 (d, *J* = 15 Hz, 1 H), 2.59 (t, *J* = 8.1 Hz, 2 H), 3.37 (s, 1 H), 3.76 (s, 3 H), 4.79 (s, 1 H), 4.85 (s, 1 H), 7.16–7.29 (m, 5 H). ¹³C NMR (100 MHz, CDCl₃): δ = 21.8, 27.6, 29.4–29.7 (6C), 31.6, 36.1, 36.3, 39.0, 52.3, 59.0, 62.2, 112.2, 125.6, 128.3 (2 C), 128.5 (2 C), 143.0, 145.3, 169.0. IR (neat): 1646, 1736, 1757, 2854, 2927, 3026 cm⁻¹. ESI-HRMS: *m/z* calcd for C₂₄H₃₆NaO₃ [MNa]⁺: 395.2557; found: 395.2557.

- (26) No 6-endo product was detected by ¹H NMR of the crude mixture.
- (27) For the use of these acid conditions in the 6-*endo* cyclization of epoxy alcohols, see: Chapelat, J.; Buss, A.; Chougnet, A.; Woggon, W.-D. *Org. Lett.* **2008**, *10*, 5123.
- (28) (a) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330. (b) Ha, J. D.; Shin, E. Y.; Chung, Y.; Choi, J.-K. Bull. Korean Chem. Soc. 2003, 24, 1567.
- (29) (a) Davidson, B. S. *J. Org. Chem.* **1991**, *56*, 6722.
 (b) Chen, Y.; McCarthy, P. J.; Harmody, D. K.; Schimoler-O'Rourke, R.; Chilson, K.; Selitrennikoff, C.; Pomponi, S. A.; Wright, A. E. *J. Nat. Prod.* **2002**, *65*, 1509.