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ABSTRACT: Uranium nitride complexes are attractive targets for
chemists as molecular models for the bonding, reactivity, and magnetic
properties of next-generation nuclear fuels, but these molecules are
uncommon and can be difficult to isolate due to their high reactivity.
Here, we describe the synthesis of three new multinuclear uranium
nitride complexes, [U(BCMA)2]2(μ-N)(μ-κ

1:κ1-BCMA) (7), [(U-
(BIMA)2)2(μ-N)(μ-N

iPr)(K2(μ-η
3:η3-CH2CHN

iPr)]2 (8), and [U-
(BIMA)2]2(μ-N)(μ-κ

1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)-
methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from
U(III) and U(IV) amidinate precursors. By varying the amidinate
ligand substituents and azide source, we were able to influence the
composition and size of these nitride complexes. 15N isotopic labeling
experiments confirmed the bridging nitride moieties in 7−9 were
formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the
amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1−, 2−, and 3− charges. Additionally, chemical
oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic
susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and
provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and
[U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) >
U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

■ INTRODUCTION

Uranium nitride molecules and materials have been the subject
of intense study in recent years due to the diverse reactivity
profile of actinide-ligand multiple bonds1−8 and the utility of
these compounds as model systems for next-generation nuclear
fuels.8−11 Molecular uranium nitride complexes have been
shown to facilitate a wide range of chemical transformations,
such as C−H activation,12−15 C−N bond formation,16−18 and
activation of small molecules such as N2, H2, CO, and
CO2.

19−22 Haber first discovered that bulk uranium nitrides
could be used as effective catalysts for the conversion of N2 to
NH3 in 1909,23 and molecular models containing uranium
nitride linkages have more recently been shown to undergo
nitrogen fixation and conversion to NH3.

24 In addition to their
versatile reactivity, uranium nitride complexes and clusters
have also gathered interest as single-molecule magnets, and the
degree of magnetic communication between metal centers has
been found to vary substantially based on the ligand
environment in these species.25−29

Research in uranium nitride chemistry is often motivated by
the goal of synthesizing dimensionally confined analogues that
can be used to model the properties of bulk uranium

mononitride (UN) fuels.30−32 UN possesses a higher energy
density and greater thermal conductivity than UO2, conferring
higher power output per unit mass and enhanced safety
margins against thermal meltdown.10,33 However, the chemical
reactivity and the electronic and magnetic structure of uranium
nitrides are still poorly studied in comparison to transition
metal analogues, motivating the need for well-behaved models
that can be used to investigate these fundamental proper-
ties.34,35 Molecular uranium nitrides and related uranium-
nitrogen complexes can be developed as versatile models for
the physical and chemical properties of UN fuel materials,
enabling us to study the electronic/magnetic structure and
reactivity of uranium−nitrogen bonds in well-defined homoge-
neous systems.
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Several ligand systems have been demonstrated to provide
support for uranium nitride complexes, including azides,32,36

siloxides,21,22,28 cyclopentadienyls,2 amides,15,37 and triamido-
amines.3,25,26 Despite these advances, synthetic outcomes
appear to be highly dependent upon small changes in the
supporting ligand environment.8 Our aim in this present work
was to develop new nitride precursors with easily tunable
supporting ligands to determine whether we could influence
the pathways toand composition ofany resulting nitride
complexes. We chose amidinate ligands for this purpose
because of their well-established steric and electronic tunability
and because of their precedent as supporting ligands in
actinide chemistry for a variety of chemical transforma-
tions.38−47 As recently demonstrated by Ma ̈rz and co-
workers,42 careful tuning of uranium coordination using
amidate ligands provides new opportunities to isolate and
characterize reactive nitride moieties. In addition, amidinate
ligands bind to metals only through nitrogen atoms, the latter
property being potentially useful in longer term efforts aimed
at using these complexes as single-source precursors to
uranium nitride materials.48−52

■ RESULTS AND DISCUSSION

Synthesis of U(IV) Azide Precursors. The uranium
tris(amidinate) complexes UCl(BCMA)3 (1) (BCMA = N,N-
bis(cyclohexyl)methylamidinate)53 and UCl(BIMA)3 (2)
(BIMA = N,N-bis(iso-propyl)methylamidinate) were synthe-
sized in good (80−89%) yields via reaction of UCl4 with 1.5
equiv of [Li(BCMA)(THF)]2 and [Li(BIMA)(THF)]2,
respectively. Salt metathesis of 1 and 2 with NaN3 generated
the azide complexes U(N3)(BCMA)3 (3) and U(N3)(BIMA)3
(4) in 84% and 97% yield, respectively (Scheme 1).
The solid-state structures of the tris(amidinate) chloride

complex 2 and the azide complexes 3 and 4 displayed pseudo-
C3 symmetry with a chloride or azide moiety bound to
uranium along the pseudo-C3 axis and κ2-N,N coordination of
all amidinates to the uranium center (Figures 1 and S1). The
U−Cl distance of 2.673(6) Å in 2 is similar to the reported U−
Cl distance of 2.678(1) Å in complex 1.53 Comparison of the
U−Namidinate distances in 3 and 4 (2.366(6)−2.502(2) Å), as
well as the U−Nazide distances (2.340(6) Å in 3 and 2.335(3) Å
in 4; see Table S3 for full analysis), shows no significant
difference in U−N bond lengths for these two ligand systems.
The U−Namidinate and U−Nazide bond lengths in 1−4 are
comparable to the analogous U−N distances in the uranium
amidinate complexes UCl(S-PEBA)3 and U(N3)(S-PEBA)3.

42

Reduction of the U(IV) chloride complexes 1 and 2 with
metallic sodium in THF gave the dark blue homoleptic U(III)
tris(amidinate) complexes U(BCMA)3 (5)53 and U(BIMA)3
(6), respectively, in excellent (95−100%) yields (Scheme 2).

Synthesis of Uranium Nitrides. We next sought to
determine if reduction of the azide moieties on 3 and 4 could
facilitate the formation of molecular uranium nitride species by
loss of N2. Photolysis of 3 and 4 with ultraviolet light yielded
an intractable mixture of products, so we turned next to redox
reactions. To investigate the redox behavior of 3 and 4, we
performed cyclic voltammetry in THF using [(nBu)4N][PF6]
as the supporting electrolyte. Complex 3 was found to undergo
a reversible oxidation at E1/2 = −0.49 V vs Fc/Fc+ (ΔE = 0.17
V) and an irreversible reduction at Epc = −3.42 V, while
complex 4 underwent a reversible oxidation at E1/2 = −0.29 V
vs Fc/Fc+ (ΔE = 0.15 V) and an irreversible reduction at Epc =
−3.21 V (Figures S3−S5).
Consistent with these findings, chemical reduction of 3 with

1 equiv of KC8 in THF did not result in a simple electron
transfer, instead yielding a new red product (7). X-ray
crystallography revealed 7 to be an unusual dinuclear uranium
complex, with the two metals bridged by a nitride moiety and
an amidinate. An interesting oxidative route and details of the
X-ray structure of 7 will be discussed below (Scheme 4). When
2 equiv of KC8 were added to a THF solution of 3, the
tris(amidinate) U(III) species 5 was isolated as the major

Scheme 1. Synthesis of UCl(BCMA)3 (1), UCl(BIMA)3 (2), U(N3)(BCMA)3 (3), and U(N3)(BIMA)3 (4)

Figure 1. X-ray crystal structure of 2 (left) and 4 (right) shown with
50% probability ellipsoids. Hydrogen atoms are omitted for clarity.
See Figure S1 for structure of 3.

Scheme 2. Synthesis of U(BCMA)3 (5) and U(BIMA)3 (6)
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product (70% yield, Scheme 3), and 7 was also isolated in 11%
yield by fractional crystallization from hexane. In contrast,
reduction of the iPr analogue 4 with 1 equiv of KC8 in THF
gave an intractable mixture of products. However, when 2
equiv of KC8 was added to 4 in THF, the solution quickly
changed color from green to blue, then again to red within 15
min. X-ray diffraction studies of the resulting product revealed
an octametallic cluster (8) containing four uraniums, four
potassiums, and two bridging nitrides (99% yield, Scheme 3).
Of particular interest in the structure of 8 was the presence of
imido ((NiPr)2−) and vinylamido ((CH2CHN

iPr)−) frag-
ments, no doubt formed by reductive cleavage of the amidinate
ligands, which results in a unique structure in which all four
uranium atoms are N-bound to ligands having formal mono-,
di-, and tri-anionic character. Related fragmentation of

amidinate ligands, though rare, has been documented in
zirconium systems.54

Complex 8 crystallizes on an inversion center in the space
group P1̅ with an asymmetric unit containing two uranium and
two potassium atoms connected through bridging vinylamido
moieties (Figure 2). Each uranium atom has two amidinate
ligands coordinated in a κ2-N,N geometry with U−Namidinate

distances of 2.452(7)−2.618(7) Å, although one of these
ligands on each uranium displays inequivalent bridging κ2-N,N
contacts to a potassium atom, with K−Namidinate distances
ranging from 2.839(8) to 3.342(5) Å. The imido fragment
bridging the uranium centers displays U1−N9 and U2−N9
distances of 2.187(7) and 2.233(5) Å, respectively, and a U1−
N9−U2 angle of 100.1(2)°. The nitride moiety bridges the
uranium centers as well, with slightly shorter U1−N10 and

Scheme 3. Synthesis of the Bridging U(IV)−U(IV) Nitride [U(BCMA)2]2(μ-N)(μ-κ
1:κ1-BCMA) (7) and the Tetra-U(IV)

Cluster [(U(BIMA)2)2(μ-N)(μ-N
iPr)-(K2(μ-η

3:η3-CH2CHNiPr)]2 (8) by Reaction of the U(IV) Azides 3 and 4, Respectively,
with KC8

Figure 2. X-ray crystal structures of [U(BCMA)2]2(μ-N)(μ-κ
1:κ1-BCMA) (7) (left) and [(U(BIMA)2)2(μ-N)(μ-N

iPr)(K2(μ-η
3:η3-CH2CHN

iPr)]2
(8) (right) shown with 50% probability ellipsoids. Hydrogen atoms are omitted, and amidinate isopropyl groups in 8 are shown in wireframe for
clarity.
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U2−N10 distances of 2.132(5) and 2.101(6) Å, respectively,
and a U1−N10−U2 angle of 106.4(2)°. These U−Nnitride
bonds are slightly (0.01−0.08 Å) longer than the reported
values for U−Nnitride bonds in the octa-U(IV) nitride cluster
[(C5Me4R)2U(μ-N)U(μ-N3)(C5Me4R)2]4

32 and the U(IV)−
U(V) bridging nitride cluster [K(DME)4][{K(DME)(Et8-
calix[4]tetrapyrrole)U}2(μ-NK)2],

55 which also contains four
potassium atoms in the coordination sphere. Similarly, the
nitride ligands in 8 are in contact with two potassium atoms
each, with K−N10 distances of 2.779(6) and 2.789(6) Å. In
addition to interactions with amidinate and nitride ligands,
each potassium is also bound to the bridging vinylamido
fragments in a μ-η3:η3 coordination mode.
Following isolation of these distinctly different uranium

nitride compounds via KC8 reduction of 3 and 4, we sought to
investigate whether a dinuclear uranium nitride analogous to 7
could be isolated, as this would provide access to a second
uranium nitride complex stabilized by the BIMA ligand system
and also demonstrate control over product nuclearity.
Direct oxidation of 6 with KN3 proved effective, giving the

dinuclear uranium nitride [U(BIMA)2]2(μ-N)(μ-κ
1:κ1-BIMA)

(9) in 93% yield. Similarly, oxidation of 5 with KN3 resulted in
the formation of 7, giving the desired product in 61% yield
(Scheme 4). In these reactions, 2 equiv of the U(III)

amidinates 5 or 6 reacts with 1 equiv of KN3, forming the
dinuclear U(IV)−U(IV) nitrides 7 and 9 by reduction of the
azide to a nitride and N2, with concomitant precipitation of
K(BCMA) or K(BIMA).
The solid-state structures of 7 (Figure 2) and 9 (Figure S2)

are very similar, with two uranium centers bridged by a nitride
and a μ-κ1:κ1 bound amidinate ligand (see Table S4 for full
comparison). Compounds 7 and 9 contain U−Nnitride bond
lengths ranging from 2.023(3) to 2.057(3) Å and U1−N11−
U2 angles of 127.0(2)° and 133.6(2)°, respectively; these
metrics are within the typical range reported for U(IV)−U(IV)
bridging nitrides.1,8

The bridging amidinate ligands in both 7 and 9 adopt a μ-
κ1:κ1 coordination mode, with each nitrogen atom bound to
distinct uranium centers and U1−N10 and U2−N9 distances
ranging from 2.485(3) to 2.563(2) Å. In the κ2-N,N bound
amidinates, U−Namidinate bond distances range from 2.422(4)
to 2.577(4) Å.
Although we were able to synthesize both the BCMA- and

BIMA-supported dinuclear complexes 7 and 9 via direct
oxidation of 5 and 6 with KN3, the different outcomes from
reduction of the azide complexes 3 (R = Cy) versus 4 (R = iPr)

are pronounced and were surprising at first given the similarity
of the amidinate ligands used. We note, however, that the
cyclohexyl substituents on the BCMA ligand in 3 result in an
overall much larger steric profile than the iso-propyl
substituents on the BIMA ligand, thereby hindering formation
of an analogous tetra-uranium cluster. The tetra-uranium
cluster 8 could also be accessed in 68% yield by reduction of 9
(R = iPr) with 2 equiv of KC8, but no new uranium products
were formed when 7 (R = Cy) was used instead. These
findings further confirm the notion that small differences in
ligand sterics may lead to rather different product outcomes in
uranium chemistry.56

Acid Hydrolysis and 15N Labeling. Since the structural
parameters of bridging uranium nitrido and oxo complexes
determined by X-ray diffraction are often quite similar,1 we
sought to confirm the identity of the nitride moieties through
chemical means. In particular, we recognized that simple acid
hydrolysis of 7−9 would be expected to form ammonium salts
from bridging nitride but not from bridging oxo moieties.25,57

Excess HCl (4.0 M in 1,4-dioxane) was added to Et2O
solutions of 7−9, giving nearly colorless mixtures of
decomposition products from each compound. After removal
of the solvent, the soluble products were extracted into d6-
DMSO. The characteristic 1:1:1 triplet of NH4Cl was evident
in the 1H NMR spectra for all three nitrides, confirming
ammonium formation via acid hydrolysis of 7−9 (see
Supporting Information (SI) for further details).
To provide additional evidence that the nitride moieties in

these complexes were formed via reduction of azide, we
prepared the labeled nitride complexes 7-15N and 9-15N by
stirring 5 and 6 in THF with 15N-labeled NaN3 labeled solely
at one terminal position. Similarly, we prepared 8-15N via
reduction of 4-15N (formed by salt metathesis of 2 with 15N-
labeled NaN3) with KC8. If the nitride moieties in 7-15N,
8-15N, and 9-15N were indeed formed by reduction of the azide
substituents, these complexes would be expected to contain
approximately 50% 15N for each nitride atom, corresponding
to a roughly equal chance that the 15N-labeled atom in each
equivalent of NaN3 would be incorporated as a nitride or lost
as N2. Accordingly, one U−N stretch would be expected in the
IR spectra of 7, 8, and 9, and two U−N stretches would be
expected in the IR spectra of 7-15N, 8-15N, and 9-15N, with the
U−15N stretches at slightly lower energies than the U−14N
stretches.
To avoid overlap with Nujol in the pertinent regions, the

labeled and unlabeled versions of each complex were dissolved
in pentane and drop-cast onto KBr plates. The U−14N
stretches in 7, 8, and 9 were observed at 740, 730, and 729
cm−1, respectively, and additional U−15N stretches in 7-15N,
8-15N, and 9-15N were also observed at 724, 704, and 711
cm−1, respectively (Figures S31−S36). In addition to yielding
rare quantitative data regarding the energy of U−N stretching
frequencies in bridging uranium nitrides, these results also
provide further evidence for the formation of the nitride
moieties in 7−9 through an azide reduction mechanism.
Following these IR studies, 7-15N, 8-15N, and 9-15N were
hydrolyzed with HCl as described above, and a multiplet
corresponding to a statistical mixture of 15NH4Cl and

14NH4Cl
was observed in the 1H NMR spectra of these complexes (see
SI for further details).

Magnetism. Following the synthesis of the uranium nitride
complexes 7−9, we sought to develop a series of related
U(III), U(IV), and U(V) complexes that could be used as a

Scheme 4. Synthesis of the Bridging U(IV)−U(IV) Nitrides
[U(BCMA)2]2(μ-N)(μ-κ

1:κ1-BCMA) (7) and
[U(BIMA)2]2(μ-N)(μ-κ

1:κ1-BIMA) (9) by Oxidation of the
Homoleptic U(III) Amidinates 5 and 6 with KN3
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benchmark for the magnetic behavior in these amidinate
systems, therefore allowing us to accurately assign the
oxidation state of the uranium atoms in 7−9 and enabling us
to distinguish structure-based effects from oxidation state-
dependent magnetic behavior. Upon addition of a THF
solution of silver(I) triflate to the U(IV) azide complex 3, the
solution immediately changed from green to black. The
cationic U(V) complex [U(N3)(BCMA)3](OTf) (10) was
isolated as a black crystalline solid in 86% yield (Scheme 5).

Complex 10 was found to be thermally unstable, undergoing
complete decomposition to an intractable mixture of
unidentified products within 1 h at room temperature as
observed by 1H NMR; nonetheless, storage of solid samples at
−40 °C was sufficient to prevent any noticeable degradation
over a period of months. Similarly to 3 and 4, photolysis of 10
in THF resulted in an intractable mixture of products.
Single-crystal X-ray crystallographic data for 3 and 10

revealed that both possess distorted C3 symmetry, each with all
three of their amidinate ligands displaying κ2-N,N chelation to
the uranium center and an azide moiety protruding outward
along the pseudo-C3 axis (Figure 3). Although the connectivity

in these two complexes is identical, the U−N bond lengths in
10 are all roughly ∼0.1 Å shorter than those in 3 (Table 1),
likely due to the increased charge and decreased ionic radius of
U(V) versus U(IV).58

Magnetic susceptibility data for the U(III), U(IV), and
U(V) BCMA complexes 5, 3, and 10 are shown as plots of μeff
as a function of temperature in Figure 4 (left). While room-
temperature magnetic moments are known to be insufficient to

distinguish U(IV) and U(III) in most cases,59 it is worth
noting that the μeff value of 5 (2.84 μB) is lower than most
reported values for U(III) species, and only slightly larger than
3, which is consistent with U(IV).59−61 The data for 10 were
collected only up to 240 K due to the compound’s thermal
sensitivity; the μeff value at 240 K (1.33 μB) is comparable to
reported values for other U(V) complexes.59−61 The low-
temperature data are more informative, as the moment of a 5f2

U(IV) complex should decrease sharply toward a diamagnetic
ground state at low temperature.4,59

Upon cooling, the μeff values decreased steadily to 1.13 and
0.76 μB at 2 K for 5 and 10, respectively, but more drastically
to 0.58 μB for 3. This behavior is consistent with a decrease in
moments upon cooling resulting from the depopulation of
crystal field levels of the uranium ions. No saturation of the
magnetization in the field-dependent measurement was
observed at 5 K for 3, also characteristic of a U(IV) species
(Figure S6).62−64 In addition, no significant difference in
moments was observed between the BCMA and BIMA
complexes, showing that the specific supporting ligand system
minimally affects the resulting magnetic properties of these
structurally similar molecules (Figures S6 and S7). As a result,
the magnetic data indicate the oxidation states of 3, 5, and 10
as U(IV), U(III), and U(V), respectively.
Magnetic susceptibility curves for the uranium nitride

complexes are shown in Figure 4 (right). No significant
difference in magnetic moments (per uranium) was observed
between the three nitrides 7−9 in the temperature range of 2−
300 K. The room-temperature moments (2.74 μB) for all three
complexes were consistent with the values of the monomeric
U(IV) tris(amidinate) azide complexes 3 and 4. No saturation
of the magnetization in the field-dependent measurement was
observed at 5 K.

■ CONCLUSIONS
With the discovery of these three new uranium nitrides
resulting from amidinate-supported uranium precursors, we
have built on the burgeoning body of recent work in this area
in several significant aspects. Two different synthetic strategies
were employed to access these nitride complexes: (i) chemical
reduction of a U(IV) azide with KC8 and (ii) reaction of a
U(III) starting material with an alkali metal azide. These two
methods led to the same di-uranium nitride product when the
BCMA ligand was used as a supporting ligand, but they yielded
distinct di- and tetranuclear uranium complexes from the less
bulky BIMA-supported precursors. In addition, 15N labeling,
IR spectroscopy, and acid hydrolysis experiments confirmed
the presence of the bridging nitride moieties in all three
complexes. Magnetic susceptibility measurements showed
oxidation state-dependent magnetic behavior for a series of

Scheme 5. Synthesis of [U(N3)(BCMA)3](OTf) (10)

Figure 3. X-ray crystal structures of the neutral U(IV) azide 3 (left)
and its cationic U(V) analogue 10 (right) shown with 50% probability
thermal ellipsoids. Hydrogen atoms and an outer-sphere triflate
counteranion in 10 are omitted for clarity. Complex 10 crystallizes
with two formula units in the asymmetric unit; both formula units
exhibit similar bond metrics. Only one formula unit is depicted here.

Table 1. Selected Atomic Distances (Å) for 3 and 10

atoms 3 10

U1−N1 2.478(5) 2.365(8)
U1−N2 2.392(4) 2.290(7)
U1−N3 2.441(6) 2.328(8)
U1−N4 2.366(6) 2.318(9)
U1−N5 2.502(2) 2.351(9)
U1−N6 2.373(5) 2.302(7)
U1−N7 2.340(6) 2.269(8)
N7−N8 1.154(8) 1.22(2)
N8−N9 1.17(1) 1.13(2)
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related U(III), U(IV), and U(V) amidinates and confirmed a
U(IV) oxidation state for the uranium atoms in all three
nitrides.
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