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Summary

Graphical models provide a powerful and flexible approach to the analysis of complex problems in
genetics. While task-specific software may be extremely efficient for any particular analysis, it is often
difficult to adapt to new computational challenges. By viewing these genetic applicationsin a more general
framework, many problems can be handled by essentially the same software. This is advantageous in an
area where fast methodological development is essential. Once a method has been fully developed and
tested, problem-specific software may then be required. The aim of this paper is to illustrate the potential
use of a graphical model approach to genetic analyses by taking a very simple and well-understood
problem by way of example.
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1 Introduction

Probability and likelihood computations, relevant to applications in several areas such as genetic
counselling, selective animal breeding, inference on the genetic nature of a disease, analysis of sur-
viving genes in an endangered species and linkage analysis, are essential in any analysis of genetic
data on groups of related individuals or pedigrees. An exact method for computing probabilities
on pedigrees in which at least one of every parent pair is a founder was proposed by Elston &
Stewart (1971), extended by Lange & Elston (1975) and finally generalised by Cannings, Thompson
& Skolnick (1978) to include arbitrarily complex pedigrees and genetic models. This method has
become known in the statistical genetics literature as peeling and is essentially the same method
as is described ten years later in the expert systems literature (Lauritzen & Spiegelhalter, 1988) for
the calculation of posterior probabilities on general Bayesian networks. Because of the enormous
storage requirements of the method, peeling fails in practice either when the pedigree has too many
interconnecting loops which are typically caused by inbreeding relationships or multiple inter-marital
relationships, or when the genetic model under consideration is too complex. In all of these genetic
applications, particularly that of linkage analysis, the computational problems are intensifying due to
the ever-increasing number of polymorphic markers available (Sobel & Lange, 1996) and the relative
ease with which individuals can now be genotyped. In particular, exact methods are completely in-
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tractable on the large complex pedigrees which frequently arise in animal populations. Consequently,
pedigree information is either discarded altogether and data collected on simple designs extracted
from a much larger pedigree, or the structure itself is approximated by cutting loops to facilitate
computation (Wang, Fernando, Stricker & Elston, 1996). Alternatively, Markov chain Monte Carlo
(MCMC) methods (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth & Teller, 1953) can be em-
ployed to estimate probabilities and likelihoods of interest. (For an overview of these applications,
see Thompson, 2001). However, MCMC methods have not really been tested extensively on these
large problems and tend to be viewed with some suspicion in practice, due to the unreliability of the
resulting estimates (Hoeschele, Uimari, Grignola, Zhang & Gage, 1997).

Here, we consider the problem of detecting a quantitative trait locus (QTL) from possibly incom-
plete marker data on individuals related via a half-sib design. As we will show, MCMC methods
are required even for this very simple scenario. Our approach to this problem involves the use
of graphical models and we will argue that graphical models provide the ideal framework for the
development and testing of different MCMC sampling schemes which is crucial to real progress
in this area. The natural modularity inherent in these genetic applications makes them ideal for a
graphical model representation. Yet, although graphical models feature explicitly in several specific
applications (Kong, 1991; Jensen & Kong, 1999; Lund & Jensen, 1999), the general applicability
of this approach to solving complex problems in genetics has not been widely appreciated. The
use of graphs in genetics dates back to the path analysis diagrams of Wright (1934). Indeed, a
standard representation of a pedigree such as the marriage node graph representation of Figure 1
(Section 2) is itself a graphical model representing the qualitative aspects of Mendelian inheritance
by which an individual’s genetic properties depend only on the genes of his parents (Spiegelhalter,
1998). However, with a more general graphical model approach, this idea is pushed a little further
in the reducing of a complex problem down to its basic components thereby fully exploiting all
the conditional independence structures of the problem at hand for performing calculations at the
most local level possible. The result is a highly flexible modelling environment which can be more
readily adapted to changes in the problem than purpose-designed software. Although our interest is
primarily in their potential usefulness in tackling general pedigrees, we will try to dispel some of
the suspicion surrounding graphical models by explaining what they are and by demonstrating their
relevance to computational problems in genetics with a simple application to QTL mapping on a
half-sib design.

2 Genetics and Genetic Mapping

A pedigree is defined to be a set of individuals with a fully specified set of inter-relationships
amongst them. Pairs of pedigree members are called spouses only if they have common offspring
in the pedigree and every such spouse pairing defines a marriage. The founders of the pedigree
are those individuals without parents and are either members of some baseline generation back to
which ancestry has been traced or individuals who have married into the pedigree in subsequent
generations. By definition, founders are assumed to be unrelated. Although we will focus on a very
simple pedigree in this paper, the large highly looped animal pedigrees with which we are concerned
pose enormous computational problems for probability and likelihood calculations. This will be
discussed further in Section 4.

For a diploid individual, the DNA in each normal cell forms homologous pairs of long strings or
chromosomes, one of each pair deriving from the DNA of his mother and the other from the DNA
of his father. A segment of chromosome coding for a functional protein is known as a locus and we
refer to the DNA at this locus as a gene. Different forms of the DNA at the locus are called alleles
and the unordered pair of alleles, one on each chromosome, at a given locus is called the genotype.
The observable characteristic is the phenotype (e.g. affected/normal, blood group etc.) where we note
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that this term refers to any data, even when observed individuals have been typed. The underlying
stochastic process whereby an individual passes a copy of one of his two genes at a locus with
probability % to each offspring is called Mendelian segregation and is a well-accepted assumption
for many traits. However, segregations of genes at loci on the same chromosome may be correlated
if the loci are close together on the chromosome, or linked. As the pair of sex chromosomes behaves
a little differently from the others—the autosomes—we will restrict our attention to autosomal traits
here.

During gamete formation in a process called crossing over, the maternal and paternal chromosomes
in any homologous pair exchange segments of genetic material so that the chromosome inherited
by an offspring from a parent is a mixture of DNA segments from the grandparental chromosomes.
Crossovers are less likely to occur between loci which are physically close on the chromosome and
the two alleles inherited by the offspring at these loci from a single parent will thus tend to have the
same grandparental origins, or be in phase. The genetic map distance between two loci is defined as
the expected number of crossovers to occur between them in a gamete. It is measured in centiMorgans
where a Morgan is the unit in which one crossover is expected to occur. An odd number of crossovers
results in a recombination when the alleles at these loci are out of phase. There are various mapping
functions (Ott, 1999) relating genetic map distance to the probability of observing a recombination.
The one we will use in this paper is due to Haldane (1919) which assumes that there is no genetic
interference and hence that crossovers in non-overlapping intervals occur independently. Under this
model, the relationship between the genetic distance d between any two loci and the corresponding
recombination fraction r is given by

1
r= 5(1 —e™¥)
with inverse function
1
d= —Elog(l - 2r).

From their definition as expectations, one advantage of map distances is that they are additive,
whereas recombination fractions are not, so they are sometimes more convenient to work with,
especially when mulitiple loci are involved.

Quantitative traits, such as height, weight etc., exhibit variation without natural discontinuities. This
is a consequence of the simultaneous segregation of many genes (polygenic variation) superimposed
by some truly non-genetic continuous variation (Falconer & Mackay, 1996). A QTL can be thought
of as a segment of chromosome affecting a quantitative trait and is essentially a “gene” with an
effect on the trait of interest which, although sizeable, is not large enough to cause an observable
discontinuity and hence cannot be detected using Mendelian methods. A marker locus is usually
a known position on the chromosome characterized by a specific DNA sequence or observable
variations in the sequence and which has no effect on the trait under study. Ideally, in order to be
useful for linkage detection, it should be highly variable or polymorphic so that non-relatives tend
to have different alleles. In principle, identification of QTLs by linkage with marker loci involves
scoring individuals for their genotypes at the marker loci and phenotype for the quantitative trait
under study. If there were a QTL coding for the trait between any pair of marker loci, differences
in mean records for the continuous trait among the various classes of marker genotype should
be evident. Genetic linkage calculations become more intensive with the consideration of several
markers jointly and when marker data are incomplete.
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2.1 Detecting QTLs by Linkage with Marker Loci

Several methods have been proposed for QTL detection (Hoeschele et al., 1997) including models
for crosses of inbred lines, crosses of outbred lines, outbred populations, with diallelic QTL, multi-
allelic QTL, and nonparametric methods. Here we will briefly outline the main classes of methods
for parametric models in which a putative diallelic QTL is segregating in an outbred population.

The simplest methods are based on the least squares principle (see Haley, Knott & Elsen, 1994) for
example). These methods have been heavily used because of their computational simplicity. Because
of the speed with which a single analysis can be performed, permutation tests requiring the analysis
of a large number of permuted datasets can be carried out (Churchill & Doerge, 1994; Good, 1994)
for the calculation of significance thresholds of the relevant test statistics. However, the method only
applies to specific and simple designs such as half-sibships or full-sib pairs. It does not utilise all the
information in the distribution of the data, it does not allow for the inclusion of random polygenic
effects and it does not enable estimation of any QTL parameters other than QTL position.

The second group of approaches utilizes the principle of maximum likelihood in which pheno-
types are modelled as a mixture of normal distributions pertaining to each QTL genotype. Initially,
methods were developed to analyse line crosses using several linked markers (Lander & Botstein,
1989; Jansen & Stam, 1994; Jansen, 1996). For outbred populations, methods were developed for
full-sib groups (Knott & Haley, 1992), for half-sib groups (MacKinnon & Weller, 1995) and for more
general pedigrees (Guo & Thompson, 1992; Jansen, Johnson & Van Arendonk, 1998). In general,
for complex pedigrees with genetic models involving several loci, exact likelihood computations
are infeasible and one must resort to Monte Carlo based approaches. Guo & Thompson (1992) and
Jansen et al. (1998) applied a Monte Carlo EM algorithm using the Gibbs sampler to obtain draws
from the necessary conditional distributions, given the data and the current values of the parameters,
in order to compute the conditional expectations which are part of the EM equations. The likelihood
approach in principle provides a general framework for fitting a variety of models. The drawback,
compared to least squares, is the higher computational demand, especially when used in conjunction
with Monte Carlo methods.

The third group comprises Bayesian methods; inferences are based on the marginal posterior dis-
tribution of the relevant parameters or of functions of these. The required integration leading to the
marginal distribution of interest is often achieved via Markov chain Monte Carlo. Earlier contribu-
tions assumed models with a single marker and a diallelic QTL applied to simple pedigree structures
(Thaller & Hoeschele, 1996a,1996b). Uimari, Thaller & Hoeschele (1996) and George, Mengersen
& Davis (2000) extended the method to deal with multiple markers. In the study of George et al.
(2000), the ordering of the QTL along the marker map was achieved using the reversible jump
MCMC sampler of Green (1995). More recently, a number of important contributions to the liter-
ature use various sampling strategies to improve the behaviour of the Markov chain, and assume
different levels of complexity in the pedigree structure. These make use of the flexibility offered by
the Bayesian approach which allows for treating the number of putative QTL as an unknown random
variable (Heath, 1997; Uimari & Hoeschele, 1997, Sillanpid & Arjas, 1998, 1999; Stephens & Fisch,
1998; Lee & Thomas, 2000; Yi & Xu, 2000; Uimari & Sillanpii, 2001).

One of the most challenging aspects of MCMC-based linkage analysis is the updating of geno-
types of individuals, especially, in Jarge, complex pedigrees. Earlier approaches used local updating
schemes where each locus for each individual was sampled conditionally on all other parameters and
individuals in the pedigree (Thomas & Cortessis, 1992; Guo & Thompson, 1992). It soon became
evident that this approach results in very poor mixing of the Markov chain (Jensen & Sheehan, 1998;
Sheehan, 2000). A variety of block-updating schemes have been proposed as an attempt to solving
this problem. In some, each locus across all individuals is sampled jointly (Heath, 1997; Sillanpia
& Arjas, 1999), whereas in others, all loci for each individual in the pedigree are sampled in one
pass as in the meiosis-by-meiosis sampler of Thompson & Heath (2000). There are also combination
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samplers which alternate between blocking individuals at a single locus and blocking loci within an
individual (Thompson, 2000; Hurme et al., 2000; Thomas et al., 2000). While the joint updating
schemes generally lead to a very significant improvement in the behaviour of MCMC algorithms,
multiple tightly linked marker loci can still result in poor mixing. Therefore, a more general block-
ing structure in which several loci are updated jointly for several individuals is needed. As will be
demonstrated in Section 6, graphical models have enormous potential for devising such samplers.
One such blocking sampler is that of Jensen, Kjerulff & Kong (1995) (and Jensen (1997)) which has
been successfully applied to a linkage analysis with one marker locus and one disease locus (Jensen
& Kong, 1999) and to a complex segregation analysis for a quantitative trait (Lund & Jensen, 1999).

2.2 A Simple QTL Mapping Problem on a Half-sib Design

In animal populations, data are frequently collected on simple designs extracted from a much
larger pedigree structure. The half-sib design of Figure 1 is one of the simplest and will be the focus
of our discussion for the rest of this paper. Consider the QTL detection problem where the trait of
interest is milk yield in dairy cows, for example. In a typical half-sib design, 10 to 15 bulls are chosen
(the sires) each of which has about 50 daughters. All animals are (ideally) typed at the marker loci and
the daughters, in addition, have a phenotypic record for the trait (i.e. milk yield) giving information
on the putative QTL. All information on the dams of the daughters is ignored and in the absence of
such knowledge, they are all assumed to be different and unrelated to the sire as befitting founders of
this simple pedigree. Furthermore, the population from which sires were sampled is assumed to be
in Hardy—Weinberg and linkage equilibrium and in particular, sires are assumed to be an unselected
sample.

Sire

Offspring

Figure 1. A half-sib design depicted as a marriage node graph where individuals and their marriages are represented as
nodes with squares for males, circles for females and dots for marriages. Here we have a sire with 2 offspring assumed to
have distinct and unrelated dams.

We will begin with the most rudimentary model for this mapping problem and assume that there
is a single QTL coding for our trait and we are only concerned with determining whether or not this
QTL is to be found between two known markers. A model with a diallelic QTL is assumed with
alleles Q and ¢ and allele frequencies pg and 1 — pg. In this simple case, we will also hold that
the marker loci are diallelic with alleles M, m and N, n, respectively and corresponding frequencies
pM, 1 — pyu, py and 1 — py. In this application, it is assumed that the map distance between the
two markers is known and so the probability of recombination between the two markers, ryy, is
given. The QTL position is not known so the recombination fractions, ry¢ and roy between each
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marker and the QTL as shown in Figure 2, have to be estimated. Under the assumption of no genetic
interference, recombinations in non-overlapping intervals are independent and the probability of a
double recombinant is rygron. Hence, we can parameterise the problem in terms of either ry g or

ron.
M . Q N
patemal__>

Figure 2. The simple QTL-mapping problem with two flanking (diallelic) markers and one QTL.

We begin with an explicit derivation of the joint and associated fully conditional distributions
of interest for a Bayesian MCMC analysis of this simple design (Section 3). Although these must
be standard, the details are not altogether trivial and are not easily found in the literature. Any
changes to either the model or the design, of course, would require a complete reformulation of these
distributions. As we will discuss in Section 5, a graphical model representation for the same analysis
can accommodate such modifications far more easily.

3 Derivation of a Bayesian MCMC Implementation

We begin with a specification of notation and the relevant prior distributions for fitting a normal
linear mixed model (Gelfand ez al., 1990). These will be consistent throughout the paper. Then
we write out the joint posterior distribution from which the fully conditional distributions for the
parameters of interest are derived.

3.1 Specifying the Joint Posterior Distribution

The phenotypic record on offspring j of sire i will be denoted by y;; where i = 1,2,... ,k and
J =1,2,..., n;, for the quantitative trait under study. The full record vector is y and is of dimension
n=n+n+...+ ng.

Let M = {M,, M,} denote the (known) marker information for the pair of flanking markers at the
M and N loci associated with all the typed individuals. In particular, My = {M;}fori =1,... ,k
gives the marker data for all the sires and M, = {M;;} fori = 1,... ,k, j = 1,...,n; is the
vector of marker data for all n offspring. For notational simplicity we will assume at this stage that
the marker allele frequencies are known. As we are only considering the case where both marker loci
are diallelic here, it suffices to list the frequencies for the M and N alleles, py and py, respectively.
Unknown allele frequencies are easily dealt with, as is shown in Section 5.

Analogously, we let Q = {Q;, Q,} be a random variable whose realization defines a particular
configuration of the vector of (unobserved) QT L genotypes of all sires (Q; = {Q;}), and of all
offspring (@, = {Q;;}) where in this case, Q; and Q;; refer to a single QTL genotype and can take
any of the four distinct values {QQ, Qq,qQ, gq}. When the distinction is required, the leftmost
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allele of the genotype is of paternal origin, and the allele on the right is of maternal origin. The
frequency of the allele Q, pg, is unknown and derives from a prior distribution taken to be Beta with

known parameters, a and b:
’ m(pg) ~ Beta(pgla, b).

The known marker map positions for the M and N loci are represented by A s and Ay, respectively,
while the unknown QT L location will be denoted by Ao where we will assume the ordering
Aym < Ag < Ay. The map distance between the two markers is dyy = Ay — Apy. As a prior
distribution on dyyg = Ag — Ay, the map distance between the QTL and the first marker, we assume
a uniform distribution over the interval (0, dysx) which is equivalent to putting a uniform prior on
the QT L location Ay over the interval (Ay — Ay).

The “fixed” effects in the model describe the effect of each (unordered) Q7 L genotype on the
data. We represent these by the vector u = (1, 2, #3) and will use

w(p) o« constant

as an improper prior distribution on u. The random effects, or sire effects, are given by s =
(s1,...,5)" where s; denotes the average additive genetic effect of the i*# sire on the phenotypes
of his daughters and which cannot be explained by the QTL. It is assumed that these are normally
distributed with common variance. In particular,

slo? ~ N(0,I0?)

where 02 € R, is the sire variance component. As a prior distribution on 02 we assume a scaled

inverted chi-square distribution with v; degrees of freedom and scale factor §;, both known:
v —v S,
el o (02 <f+“exp(ﬁ) 1)
US
Note: If we let a,f denote the polygenic variance i.e. the total additive genetic variance unexplained

by the QTL, we have that 62 = %0',‘2 since half the genes of an offspring are shared with its sire.

Let o2, € R, be the residual variance component which models all the variation in the data that
2

cannot be explained by the sire effect or the QTL. In terms of the above, 02, = 302 + 62 where o
is the environmental variance. From the restrictions imposed by the model, we have that

and hence

res (2)

~
w

where h? is the polygenic heritability with A% € [0, 1]. Note that 02 is also assumed to have a scaled
inverted chi-square prior distribution with known degrees of freedom v,.; and scale factor S, ;.

Denote the vector of unknown parameters by 8 = (¢, s', 62, 6. ) . The assumed sampling model

for the data is then:
¥il(Qi;=00,8) ~ N(ui+si,07)

Yijl(Qij = 0q,0) ~ N(uz+si,0%,)
yiil(Qi; =qQ,8) ~ N(uz+s;,02%)

ijl(Qij =4q,0) ~ N(us+si,0%)
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or
y|1Q,8 ~ N (Xp+ Zs,IoZ, 3)

where X and Z are known incidence matrices associating p and s, respectively, with the data.
Equivalently, we can write

yij =8 +qij + e 4
where
eij ~ N©,02))
and
w if Q=00
gij=1 Mm2 ifQij=QqorqgQ
us if Qi =qq

Note that the expression in (3) implies that
Cov(si,e;;) =0V, J.

Furthermore, given the QTL genotypes for the offspring, Q,, and the sire effects, s, it is assumed
that phenotypic records are conditionally independent.

For convenience, all conditioning on the known marker allele frequencies, py and py, known
map distance between the markers, dyy and known hyper parameters of prior distributions will be
suppressed from the notation. The joint posterior distribution is:

f(pg, Q. A2g,0ly, M) o« f(y.M, pg,Q,20,0)
o« f(ylQ,0)Pr(QIM, g, po)m (@) () (pg) )

where 7 (8), m(Ag) and 7 (p) represent the prior distributions for 8, Ay and pg, respectively. Given
the model assumptions, note that the prior distribution for 8 can be factorised as:

n(0) x f(slo)m(oD)m (ol )m(p). (6)

The fully conditional posterior distributions for the unknown parameters @, Ag, &, s and pg, given
the phenotypic records for the quantitative trait, are all derived from the joint posterior (5) and will
be written in the form

f Cl.,data) or Pr(-|.,data).
These will be detailed below in the remainder of this section.

In a full likelihood approach, the parameter (row) vector of interest wouldbe 8 = (i, g, 0%, 02,
po)’ and the analysis would involve joint maximization of the following function with respect to 3:

L@Bly) o /WZPr(Qw,AQ,pQ)f(le,o)f(slaf)ds ™
Q
= ZPI'(Q'M,A-Q; PQ)f(Y|Q’ “’G.s'z’arzes) ‘
Q

The required summation over all QTL genotypes Q which implicitly involves summation over all
possible phases in the sires (see Section 3.2 below) is an enormous computational undertaking for
any reasonably sized half-sib design (Section 2.2). Of course, for more complicated designs and
particularly for general pedigrees, the likelihood (7) will not have a closed analytical form and
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sampling for all quantities of interest will be essential. Even on simple designs, if direct estimation
of the sire polygenic effects is of interest, maximum likelihood methods do not apply and MCMC
methods must be employed. For this, all sire families need to be considered jointly and the inclusion
of these within- and between-family polygenic effects adds greatly to the computational complexity
of the problem (Section 5). In the maximum likelihood approach of Georges et al. (1995), such
computational problems have been largely circumvented by the treatment of each sire and his
offspring in a separate analysis but neither sire effects nor the sire variance component can be

inferred in this way.

3.2 The Fully Conditional Posterior Distribution for Q

It is convenient at this point to augment with the random variable F; representing the phase of the
i** sire. Information on phase defines the haplotype which is a specification of the alleles that each
gamete of the sire carries for the markers and the QTL. From (5), the fully conditional posterior

distribution of Q is given by:
Pr(Q|., data) x f (y|Q,, 8) Pr(Q,, Q,|M, Ag, po) - ®

From the assumption that offspring phenotype records are conditionally independent given offspring
genotypes and sire effects, the first term factorises as follows:

f (¥1Q,,0) = I'[Hf(y.,lcu, 9).

i=l j=

For the half-sib design under consideration here, the second term can be written as:

Pr(Qy, Q,|M, rg, po) HPr Qilpo] ZPr[FIM]nPr Qi;1Qi, M, Ag, po. F;] .

i=1 j=
However, by straightforward manipulation,

Pr[M;, My, ..., Min,|F;]Pr[F]
g Pr[Mi, Mar, ..., Mg, | F;] PrIFi]
_ PrIMPr[FRITL, Pr My M, F
T TR Pr[Mi, Mir,..., Miy | Fi] Pr[F]

Pr[FilMi,Mil»--- ’Mi'li] =

« [""!pr[p,.w,-, My] ©)
j=
although we note that, from a sampling point of view, it is more useful to write
Pr(Fi\M;, M;;) ox Pr(Mj|M;, F)
in expression (9). Substituting back into (8) yields: ,
Pr(Ql. data) o« [Ii, Pr[Qilpg] X5 T/, PrFiIM;, Mij] x
f (3i;1Qij, 6) Pr[Q;1Qi, Mi, Myj, Mg, po. Fi]. (10)
Again, a simple manipulation of the last term shows that
Pr[Q;, Mi;|1Qi, Mi, Ao, pg. Fi

(11
Pr[M;;1Q;, M;, A, po, Fi)

Pr{Q;;|Qi, M;, Mij, Ao, pg, Fi] =
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3.2.1 Sampling the QTL genotypes

In the case of the half-sib design, it is possible to sample all QTL genotypes simultaneously (Janss,
Thompson & Van Arendonk 1995). This can be accomplished by drawing first from [Q s data] and
then from [Q, 1 Qizy oo, Qin, 1Qy, -, data] Since families (sires and their offspring) are independent,

a draw from Pr (Q)|., data) involves calculating:
k
Pr(Q|.,data) = HPr(Qu, Qiz, .-, Qin, 1Q;, -, data) Pr(Q;|.,data) .

The first term in the above expression requires n; computations from (11). Using (10), a draw from
[Q,- [, data] for sire i involves computing:

Q [, data Zz ZPr(Qil,Qiz, ,Qmi,Q,-I.,data)

Qil i2 Q"'i
o Pr{Qilpg) Z]‘[Pr[mm,-,M.-,-] 3 £ (3451Qi;. 6) Pr[QylQi, My, Mij, Ag, po, Fi].-
Fi j=1 Qij

This is an example of what is meant by joint or block sampling.

3.3 The Fully Conditional Distribution for Ag

From (5), we have:
f (xol.,data) o Pr(QIM, Ag, po) 7 (Ag) . (12)

This expression does not have a standard form and therefore a Metropolis—Hastings step can be used
to draw samples from it. Let A{, denote a candidate value generated from the proposal u ()Jb IAQ),
where Ao denotes the previous realization from (12). Then the proposal is accepted with probability
o ()Jé, Ag) given by:

a Ay, Ag) = [

The candidate generation density could be a uniform distribution on the interval (M ax{ip, o — h},
Min{Ayn, Ao + h}), where h is chosen such that the acceptance rate is in the range 20% to 50%.

. f(A | Jdata)u(A IA. .
min [ £GL-2290228, 1] if f (o)., data) > 0.

1, otherwise

(13)

3.4 The Fully Conditional for p and s

From (5), the fully conditional posterior distribution of ( g ) is:

f(( s )|.,data) « f(¥Q6)r®)
« f(¥1Q,0)f (slo?) (14)

from the factorisation in (6). As given in (3) Section 3.1, the sampling model for the data is:

y1Q, p, 5,02, ~ N (Xp + Zs, Io2))
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where X and Z are known. Since the prior distribution of sire effects (Section 3.1) is
slos2 ~N (0, Icrsz) ,
it follows from properties of the Normal distribution, that the form of (14) is given by:

( B ) |.,data ~ N (( L" ),C_larzes)
s )

o[ XX xz

=l zZX Z7Z+Ic
XX XZ B1_[Xy
ZX 7Z+1c || 5 |T| Zy

with ¢ = 02_ /o2. Again, invoking properties of the normal distribution we can write,
res [ 95 g g prop

where

and & and S satisfy:

uls,.,data ~ N [(X’X)—1 X' (y — Zs), (X'X)™ 0,2“]
and
sy, ., data~ N [(Z'Z + Ic)'_1 Z (y—-Xup,(ZZ+ Ic)_1 0,225] .

3.5 The Fully Conditional for %, and o?
Again from the joint distribution (5) we have that
f (0%,1.. data) « £ (y1Q,8,) 7w (52

251

(15)

(16)

where 7(62.) ~ Vyes Sres X, 2 (Section 3.1). From standard properties of the Normal distribution, it

res es

follows that this posterior distribution is also proportional to a scaled inverted chi-square distribution

with 7,; degrees of freedom and scale parameter S,.; where Vyes = n + v, and

§. = y—Xp-— Zs)' (y — Xy — Zs) + Vres Sres
res nt Ve .

Similarly, from (5):
f (02].,data) o f (slo?) n(o?)
from which we obtain:
aszl., data ~ v}gsxgz
where ¥; = v; + k (k being the number of sires) and

: s's + v, S;
ST k4
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3.6 The Fully Conditional Distribution for pg

For the j** daughter of sire i, let Q;,1) denote the allele inherited at the QT L locus from the sire
and Qg 0y the QT L allele received from the dam. From (5),

Pr (pgl.,data) o Pr(QIM, Ag, pg) 7 (pg)
k ni
=7 (po) [[ Pr@ilpo) Y _ Pr(FAM) [ ] Pr(QujiQ:i, Mi, Mij. Fi, Ag, po)
i=1 F; j=1
k ni
=n(po) [ [ PrQilpo) > Pr(FIM) [ | PrQu).nIQi, Mi, My, Fi, do) x
i=1 F; j=1
Pr(Qq;.0lpo)
k n;
=n(pe) [ [ Pr@ilpa)([ | Pr(Quj0lpo)) x
i=1 j=1
> Pr(FAMY[ | Pr(Qu;niQi, Mi, Mij, Fi, 20))
Fi Jj=1
k n;
o 7 (pg) l—[Pr(Qi|PQ) [IPr(Quiolpe)- (17)
i=l1 j=1

J

The last line in (17) follows because the term
Pr [Q(ij,l)lQi’ Mi» Mij; Ev }“Q]

does not depend on pg. The term Pr [Q;,0)| pg ] corresponds to the pmf of a Bernoulli distribution
(the allele received from the mother is either Q with probability pg, or g with probability 1 — pg)
and the term Pr [Q,» [ pQ] is derived from the assumption of Hardy—Weinberg equilibrium at the QT L
locus. Therefore the term

k n
[TTTPr[Qus0lpe]Pr[Qilpe]
i=1 j=1
involves the count (over all n 4+ 2k gametes) of the number of Q and g alleles. Let ng be the
number of Q alleles and n, the number of ¢ alleles for the given QT L genotype configuration with
ng + n, = n + 2k. Then, since w(pg) ~ Beta(a, b) (Section 3.1), the fully conditional posterior
distribution of pg is

pol.. data ~ Beta (pgla+ng,b+n,) . (18)

4 Graphical Models

A probabilistic approach to dealing with uncertainty in expert systems dates back to the 1980s
(Pearl, 1988) when it was realised that calculations on seemingly intractable high dimensional
problems can be efficiently performed by imposing a set of simplifying conditional independence
assumptions which essentially split the problem up into small manageable pieces. This simplification
enables the representation of a complex problem in graphical form which in turn informs the
development of efficient algorithms both for performing calculations and making inference on
model parameters. These models are sometimes called Bayesian networks (Jensen, 1996) but we will
adopt the terminology of Cowell et al. (1999) and use the more general term, graphical modelling to
refer to methods which exploit local dependencies to express complex relationships for modelling
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and computation.
We define a graph to be a set of vertices or nodes and a set of edges where an edge is an unordered

pair of nodes. The nodes represent the variables in the model and the edges represent links between
them. Edges can be either directed with arrows indicating the direction of the link, or undirected.
Directed edges represent probabilistic influence or causal mechanisms whereas undirected edges
refer to correlations between the variables. The terminology traditionally used in this area, and
unfortunately for our applications, derives from genetics. For instance, for nodes labelled A and B,
we say that A is a parent of B, or B is a child of A, if there is a directed edge from A to B. In contrast
with the biological interpretation of these terms, a node in a graph can have more than two parents,
as shown in Figure 3. A path is defined to be a sequence of directed edges, each sharing a common
node with both preceding and succeeding edges. If there is a path from node A to node B (i.e. we can
arrive at B by following arrows from A), we say that A is an ancestor of B and B is a descendant
of A. A path beginning and ending with the same node is a directed cycle. Analogously, a trail is a
sequence of undirected edges and forms an undirected cycle if it begins and ends with the starting
node. If all the edges of a graph are directed, it is a directed graph and if it has no directed cycles, it
is a directed acyclic graph or DAG (Cowell et al., 1999). For a general DAG, where the nodes are
variables, {v € V}, with some joint probability distribution function, we have that any node, given
its parents, is conditionally independent of all nodes which are not descendants. In other words, the
form of the joint distribution function is related to the structure of the graph and necessarily takes
the form:

I]f@lpawy) (19)

veV
where pa(v) denotes the set of parent nodes of the node v. This is known as the *“directed local
Markov property” (Lauritzen et al, 1990).

Figure 3. A simple graphical model with nodes A, B and C all parents of D while E and F are both child nodes of D.
Note that if nothing is known about D besides what can be inferred from its parents, then A, B and C are all independent.
Conditional dependencies between A, B and C are imposed, however, if information on F, say, influences the certainty of D.

As detailed by Lange & Elston (1975), a pedigree can be considered as a directed graph with two
kinds of node and two kinds of directed edge or arc. Individuals and marriages are represented as
nodes, and the connecting edges are marriage arcs, directed from an individual to his marriages,
and descent arcs, directed from a marriage to the resulting offspring. As genes are always passed
down from parents to offspring, the directions on the edges can be omitted as in the marriage node
graph of Figure 1. A path in a pedigree necessarily involves an alternating sequence of marriage and
descent arcs, and since an individual cannot be his own ancestor or descendant, a pedigree is a DAG,
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by definition. Undirected cycles can be formed in many ways, however, and these are usually called
loops. An example of such a loop arises when two biologically related individuals marry causing two
separate paths of descent from a common ancestor to the node representing their marriage. Other
loops include marriage rings, exchange loops, muitiple marriage loops and all kinds of overlapping
combinations of the above (Cannings e? al., 1978). A pedigree without loops is a graph without any
cycles and is often called a rree.

Algorithms for exact calculation on directed acyclic graphs with a conditional distribution specified
for each node, generally involve the following steps:

1. Remove the directions from the existing edges and add further undirected edges between all
pairs of parent nodes with a common child node. This is referred to as moralising the graph
i.e. by “marrying” the parents.

2. The moral graph is now triangulated by adding more edges until there are no cycles involving
more than three nodes. Finding a good triangulation requires an algorithm to find an optimal
ordering for node elimination.

3. Once the graph has been triangulated, maximal sets of pairwise connected nodes, or cliques
can be identified and these cliques are then connected in what is known as a junction tree.
The goal of any triangulation algorithm is to generate cliques which are as small as possible.
However, finding an optimal elimination sequence is known to be NP-hard.

(See Jensen (1997), Jensen & Kong (1999) or Lund & Jensen (1999) for a brief overview and Lau-
ritzen & Spiegelhalter (1988) or Cowell et al. (1999) for details on exact methods of computation.)
The cliques in the junction tree correspond essentially with the cutsets of the peeling algorithms in the
statistical genetics environment (Cannings et al., 1978) and finding optimal peeling sequences is of
the same order of difficulty as finding an optimal node elimination sequence for graph triangulation.
The general problem with exact methods is that their storage requirements are exponential in the
size of the largest clique, or cutset, and these tend to get very large when the graph has (undirected)
cycles or loops. We have already discussed how loops can occur in pedigrees. There are many ways
of forming loops in a general graph (Section 5).

Graphical models lend themselves readily to a Bayesian interpretation where all unknown quan-
tites are regarded as random variables and so data, latent variables and model parameters can all be
represented as nodes in the graph with associated distributions. They are most useful for problems
such as arise naturally in genetics applications, where extensive conditional independence assump-
tions allow for communication of structure without recourse to large sets of equations as we had in
Section 3 (Spiegelhalter, 1998). This modularity enables direct exploitation of local computational
methods and hence easy extension of the model, in principle, to arbitrary levels of complexity.

HUGIN (Andersen et al., 1989) is a commercially available software package for computing
probabilities on general Bayesian Networks. For MCMC applications (particularly in a Bayesian
framework) the BUGS package (Gilks, Thomas & Spiegelhalter, 1994), which is currently available
free of charge, performs Gibbs sampling on graphical models. For these big problems in genetics,
MCMC sampling schemes are required and these tend to have slow mixing problems unless some
form of block or joint updating is used. (See Jensen et al. (1995), for example.) The random propagate
algorithm (Dawid, 1992) implemented in HUGIN enables efficient sampling of a random configu-
ration from the correct distribution on a graph. For this reason, we have chosen to use HUGIN for
joint updating of blocks of variables conditional on the values of all the variables not included in the
given block within an MCMC framework. The MCMC code has been written outside HUGIN. The
aim is not to produce a rival program to the existing statistical genetics software. Indeed, it is highly
probable that some existing program will be more efficient for any specific application. However, by
placing these genetics problems in the general framework of graphical modelling, we aim to produce
a more flexible modelling environment which allows modification to more complicated problems
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without major rewriting of the necessary software.

5 A Graphical Model for the QTL Problem

We now formulate the Bayesian analysis of Section 3 in a graphical modelling framework. The
general idea of graphical models is demonstrated in the gradual building of the model shown in
Figure 8 at the end of this section. As the full graph for the whole design comprises over 200,000
nodes, we will focus on the pedigree of Figure 1 with only one sire and two daughters. For the
purposes of illustration by way of keeping the graph relatively uncomplicated, we also omit explicit
representation of some of the parameters at this point, although we do include them in our simulation
analysis as shown in Figure 9 in Section 6.

5.1 A Single Locus

We begin with the sire and one daughter for the first marker locus with alleles M and m, say.
For the sire, we create two nodes representing the allelic states of his maternal and paternal genes
at the locus, the values at which are randomly assigned from a Bernoulli distribution parameterised
with the appropriate allele frequency, py. Under the assumptions of the model (i.e. random union
of gametes), these distributions are independent. The parameter py is assumed known at this stage
and is hence not explicitly represented in the model. However, as will be shown in Section 6, it can
easily be estimated by including it as an additional node with an appropriate sampling distribution.
Indexing maternally inherited genes by 0 and those paternally inherited by 1, as before (Section 3.6),
we define the following nodes and their probability distributions for any particular sire:

Mioy ~ Ber(pm)
My ~ Ber(pm)

where M(; o) denotes the maternal gene of sire i at the first marker locus and M1y denotes his
paternal gene. These are the two black nodes at the top of Figure 4(a).

D )-GO

(a) Sire and one offspring (b) Sire and two offspring

Figure 4. A sire and offspring with genes at one locus. Nodes corresponding to genes sampled from the population are shown
in black. The genes inherited from the sire are shown in white. The segregation indicator nodes are shown in light grey.

Segregation of genes from sire i must now be considered for each daughter and it is particularly
convenient here to do this using meiosis or segregation indicators (Thompson, 1994; Sobel & Lange,
1996; Thompson, 2001). These are binary variables taking the values 0 and 1 to represent maternal
and paternal inheritance respectively and are defined for each daughter. At this first marker locus
(the “M-locus™), the meiosis indicator for the j** daughter of sire i is denoted by Si’j.‘ and represented
by the node at the bottom right of Figure 4(a). Its value is randomly assigned from a Bernoulli
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distribution with probability % since, in the absence of information on other loci, inheritance is
assumed to be Mendelian. The gene inherited by the daughter from her sire (her paternal allele) will
be a copy of the paternal gene in the sire if the meiosis indicator has a value of 1 and will be a
copy of the sire’s maternal gene, otherwise. The daughter’s paternal gene is denoted by M(;; 1) and is
represented by the white node in the bottom centre of Figure 4(a). Since we have no information on
the dams, we assume that the maternal gene, M} g), is randomly drawn from the general population
with allele frequency ppy and we represent this by the black node on the bottom left of Figure 4(a).

Specifically,

M0 ~ Ber(pm)
[ M(,',o) if Sgi =0
Mgy = e oM
M(,',l) if SU =1.
To complete the graph in Figure 4(a), we note from above that the nodes M(; 0y, M(;.1) and S,.’;’ are
all parents of the node M;,1) since the value assigned to the daughter’s paternal gene depends on
all three. Accordingly, arrows are directed from each of these parent nodes to the child node.

In Figure 4(b), a second daughter has been added. This involves replicating the nodes and con-
nections described above for the first daughter. In accordance with Mendel’s First Law, the variables
corresponding to one daughter are statistically independent of the variables corresponding to the
other daughter given the state of the variables corresponding to the sire. Hence there are no arrows
directly connecting any nodes representing one daughter to any nodes representing the other. Because
of this replication from one to several offspring, we will focus on one offspring and continue to build
on Figure 4(a).

Note that the model assumptions are also explicitly represented in Figure 4. Independence of the
maternal and paternal genes in an individual, due to the assumption of random union of gametes, is
indicated by the lack of connecting arrows between them. Similarly, we infer independence of the
offspring maternal genes from each other and from the genes of the sire reflecting the assumption
that as they are all founders of the pedigree, dams are unrelated both to each other and to the sire.

We complete our modelling of the single-locus scenario by adding nodes representing the geno-
types for both individuals with values completely determined by the assigned genes and in this case,
directly observable as marker phenotypes. Let M; denote the genotype at the “M-locus” for sire i
and M;; the corresponding genotype for his j*# daughter. Nodes representing these values are shown
in Figure 5 with the M; node shown as a child of M1y and M; o) and similarly M;; as a child of
M1y and M;; o) to reflect the necessary dependencies.

Figure 5. Figure 4(a) with genotype nodes (in dark grey) added for both individuals. Again, nodes corresponding to genes
sampled from the population are black, genes sampled from the sire are white and segregation indicator nodes are light grey.
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5.2 Two or More Linked Loci

For the same two individuals, we now consider the addition of a second locus—the QTL locus—
which is linked to the first. Just as for the “M-locus”, the sire’s maternal and paternal genes at the QTL
are represented by two nodes with values independently and randomly assigned from a Bernoulli
distribution, this time with parameter pg:

Quoy ~ Ber(pg)
Qin ~ Ber(pQ).

The parameter, py, is itself a random quantity with an assumed Beta prior distribution (Section 3.1)
but we will not represent it as a node at this point to avoid over-cluttering the graph. In other words,
the graph of Figure 6 assumes that p, is known. Since there is no observation on the sire directly
related to the QTL, we do not represent the sire’s QTL genotype explicitly in the graph. As in
Section 5.1, the daughter’s maternal QTL gene is randomly sampled from the population while the
paternal gene is inherited from her sire according to the value of the relevant segregation indicator:

Qujoy ~ Ber(pg)

0 Qio ifSE=0
(ij1) = X
Y Quy ifSZ=1

with Qj0 and Qgj,1y denoting the maternal and paternal genes of the Jj** daughter of sire i at
the QTL, respectively. Arrows from the two QTL genes in the sire and from the QTL segregation
indicator are directed to the paternal gene in the daughter, as before. A further node representing the
daughter’s QTL genotype Q;; is included in the graph, despite the fact that it is unobservable (by
definition), since we are interested in a quantitative phenotype with distribution depending on the
genotypic state at the QTL. This is a child node of her two QTL genes as is indicated by the arrows
in Figure 6.

Figure 6. Two individuals with two linked loci. Nodes corresponding to genes sampled from the population are shown in
black. The genes sampled from the sire are shown in white. The segregation indicator nodes are light grey. Genotypes are
shown in dark grey.

However, we now need to take linkage (and implicitly phase in the sire) into account. At this
point, it is simpler to think in term of recombination fractions rather than genetic distances. Under
the no-interference model, whether or not the sire’s maternal or paternal QTL gene is passed to the
daughter depends only on what was inherited at the “M locus™ and on the recombination fraction rj g
between the two loci. In other words, the daughter’s segregation indicator at the QTL, Sg , depends
on her segregation indicator at the linked locus and on ry g which we will also assume known, for
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now. Estimating this quantity is a trivial extension (Section 6) but leads to a more complicated graph
(Figure 9). Specifically, we have
0 Ber(rug) if S};’ =0
Y Ber(1—ryg) ifS¥ =1.

This dependency is represented in Figure 6 by an arrow connecting the two segregation indicators.
Additional marker loci can be included in a completely analagous fashion. To include the “N-
locus”, we define
Nioy ~ Ber(pwn)
Ngn ~ Ber(pwn)

for the sire’s genes and

SN

[ Ber(rgn)  ifS2=0
1] ~

Ber(1—rgy) ifS2 =1
Ngjo ~ Ber(pn)

Ngoy if Sl-[}l =0

Ngypy if S,.’}’ =1
for the segregation indicator and daughter’s genes where rgy is the recombination fraction between
the QTL and the N-locus. This is in fact a redundant parameter since rgy can be expressed in terms
of ryn and ry g (Section 2.2). Further nodes, N; and N;;, are defined for the (observable) genotypes

of sire and offspring at this locus which depend on the relevant genes. Arrows reflecting all these
dependencies are added, exactly as before, to get the model in Figure 7.

Nyjyn =

Figure 7. Two individuals with three loci. Nodes corresponding to genes sampled from the population are shown in black.
The genes sampled from the sire are shown in white. The segregation indicator nodes are shown in light grey.

In addition to marker data, we also have phenotype information for the continuous trait of interest
on the daughters. According to our model (Section 3), this depends both on the genotype at the QTL
and on the unlinked polygenic effect inherited by the daughter from her sire, and these dependencies
are reflected by the arrows shown in Figure 8. The node, s;, represents the effect of sire i and has the

Normal distribution N (0, 02) where 02 is all the additive genetic variance unexplained by the QTL
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(Section 3) and & a = 02 Recall that y;; is the phenotype record on offspring j of sire i and (1, 42
and p3 are the ﬁxed effects corresponding to each of the three unordered genotypes at the QTL: QQ,
Qq and qq. Then, the observed phenotype is also assumed to derive from a normal distribution:

N (si + 1, 40 +02) if Qo= Quin=20
yij~{ N(si+pa d062+02) if Qujo # Quiv
N (si + 13, 3 2+d ) if Q(ijO) = Qujn =4

where o2 represents the environmental variance and 3 3 o2 is the proportlon of the additive ge-

netic variance unexplained by the QTL or the sire. Note that 267 + 062 = o2, as we had be-

fore in Section 3. Assuming o; a,zﬂ, 1, U2, 43 are known for now, the corresponding model for
one sire with two daughters 1s shown in Figure 8. In Section 6, we will see that the quantities
PM, PN» PQs A, ag, a,zes , 41, W2, 13 can all easily be considered as random and the corresponding
graph is shown in Figure 9.
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Figure 8. Graphical model for the half-sib design of Figure 1 where only one sire with two daughters is considered.

Note that although the pedigree of Figure 1 is clearly unlooped, the corresponding graph of
Figure 8 for this three-locus genetic model (Section 3.1) has many loops. The loop defined by the
node ordering

{Maj 1, Ma1y, Mi, Moy, Mj )
is a very simple example whereas a more complex loop is created by the trail
M M
{sM i Majn, Maoy, Maj . Sijrs S,-j/, Qs 260y Qijys S ,, S}

In an industrial-sized half-sib design where there are up to 100 offspring associated with any particular
sire, the loop possibilities are uncountable although the pedigree is still a tree. The graphical model
representation of Figure 8 shows explicitly why computational problems arise when calculations
with multiple loci are required. It should not be surprising to learn that an exact likelihood analysis
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for the problem represented in Figure 8 is only feasible when small numbers of offspring in each sire
family are involved. For a reasonably large (i.e. typical) design, exact computational methods break
down and MCMC methods must be used.

6 Implementation on a Simulated Example

A Bayesian MCMC analysis for the model described in Section 3 was carried out on a sim-
ulated half-sib design using a graphical models program written around the HUGIN package
(http : //www.hugin.com).

6.1 Simulated Design and Prior Distributions

The design was a realistically large half-sib design comprising 15 sires, each with 100 offspring.
The two diallelic marker loci were known to be 10 cM apart and the QTL was placed at the centre of
this interval resulting in a recombination fraction of 0.05 between either marker and the QTL which,
in turn, corresponds to a map position of g ~ 0.053. Allele frequencies for the simulations were set
to be 0.4 for both pys and py while pg was 0.5. Genes were assigned to the founders in the design
from the appropriate Bernoulli distributions and offspring genotypes were simulated in accordance
with Mendelian segregation and the linkage model described in Section 5.2. As a further addition
to the model of Section 3, the allele frequencies of the markers were also assumed unknown in the
analysis and were assigned the Beta prior distribution introduced in Section 3.1 for the case of the
QTL. For all three loci, the parameters of the Beta prior were ¢ = b = 1 which defines a uniform
distribution over the interval {0, 1].

The “fixed” effects, or additive effects for the QTL genotype were set to be: w1y = 10, 2 = 0 and
13 = —10 and the prior distributions on these were assumed to be improper uniform. A quantitative
genetic effect unlinked to either the markers or the QTL was simulated in accordance with the
description in Section 3.1. For this, it was assumed that the conditional prior distribution of sire
effects, s;, given the sire variance 02, was Gaussian, with mean vector zero and with variance Io?,
where I is the identity matrix of order 15 x 15. The sire variance and residual variance were assigned
independent scaled inverted chi-square distributions (Section 3.5), with degrees of freedom v; = 5
and v,.; = 5 respectively, and corresponding respective scale parameters S; = 7.5 and S,.; = 92.5.
For the simulation experiment, we took 02 = 7.5 and 6%, = 92.5.

The phenotypic data for the quantitative trait were simulated for all 1500 offspring of the 15 sires
in accordance with the sampling model described in Section 3.1 for the given parameter values and
priors:

Yij =S8 +qij+ e

where

uy for Qij=QQ
gj=1 #2 for Qij=QqorqQ
us for Qi =qq

and eij ~ N(O, ar'zes)'

The full graphical model for this analysis is shown in Figure 9 for a single sire with two offspring
where we have elaborated on the graph we built in Section 5 by adding nodes for the QTL genotype
effects 11, i2, 13, variance components 62, 0,2, QTL map location A, and allele frequencies, all
of which are held to derive from the prior distributions given above.



Bayesian MCMC Mapping of Quatitative Trait Loci 261

:.“n:*.- . .
» _-J‘-f,,}-r’ ) f"f;g",u_. )

(0,

/( qum) "\u}'n f f % B 5 “"_-"\_Jnj'_..h___,"__ k j?u}':._f_}g.-‘

ﬁ G ¢ @ ) @ o G

Figure 9. Graphical model for the full Bayesian analysis on a half-sib design with one sire and two daughters.

6.2 Implementation

The model was implemented via a two-phase Gibbs sampling approach. In the first phase, the
discrete nodes in the graph of Figure 8 comprising all segregation indicators, genes and genotypes
were sampled jointly. The second phase included sampling of the allele frequencies, the QT L
position, the two variance components (one at a time) and the “location parameters” which comprise
the three QT L genotypic effects and fifteen sire effects. Variance components and allele frequencies
were all sampled using a single-site Gibbs sampler from their respective fully conditional posterior
distributions in Sections 3.5 and 3.6. The QT L position, Ag, was sampled using a Metropolis—
Hastings algorithm as described in Section 3.3 and this was converted to the recombination fraction
rug for the block sampling step involving the segregation indicators. The 18 genotype and sire
effects were drawn in one pass from their joint fully conditional posterior distribution (Section 3.4).
The package HUGIN was used in the first stage of the MCMC algorithm. The program sets up a
graph representing all the individual genes, segregation indicators, quantitative phenotypes and the
various connections or links between the nodes. The package allows simultaneous sampling of all
the discrete nodes of the graph in Figure 8 conditionally on all the parameters and the observed
phenotypes. This kind of blocking, or joint updating of large groups of variables, should greatly
facilite mixing of the MCMC samplers. Of course, other blocking schemes can be tried and sampler
performance should be closely examined.

After a fair amount of experimentation, the reported inferences were based on results from a
single long chain of 98,000 updates. The first 200 samples were discarded (burn-in) following which
every 10 sample was kept yielding a final sample size or actual chain length of 9780. Convergence
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was studied informally, using trace plots and comparing results obtained from independent chains.
Estimates of effective chain lengths were obtained for all the parameters based on one of the methods
proposed by Geyer (1992). The minimum effective chain length which corresponded to the estimate
of the QTL position Ay was 376. For all the other parameters, effective chain length was larger than

2000.

6.3 Results

Monte Carlo estimates of the 2.5% and 97.5% percentiles of the posterior distributions for a
few selected parameters are shown in Table 1, together with the “true” values from which the
data were actually simulated. In any particular sample, we expect to observe random fluctuations
about these true” values. In this case, for instance, the sample gene frequency of the QT L allele
was 0.47, whereas the "true” value was actually 0.50. Consequently, the reported posterior interval
does not cover the “true” value for this parameter. The results for the QT L genotypic effects are
represented by A, = |u1 — u3l, which describes the difference between the two homozygotes,
and by Ay = us — ’i‘—}‘fl the dominance deviation, which measure the effect of the heterozygous
genotype. The general conclusion from the results in Table 1 is that the posterior distributions give
good coverage overall for the simulated values.

Table 1

Simulated values of the parameters (2nd line) and 2.5% and 97.5% per-

centiles (1st and 3rd lines) from the appropriate posterior distribution.
Parameter: of o, PO Ag Ay Ao
2.5% Percentile 48 813 0409 137 -462 0.014
Simulated Value 7.5 925 050 200 000 0.053
97.5% Percentile 253 1132 0495 23.1 142  0.099

Figure 10 displays trace plots for some of these parameters which indicate that mixing of the Monte
Carlo chains appears to be satisfactory. This is also supported by the rather small autocorrelations
observed between samples and in the sizes of the effective chain lengths (not shown).

Histograms of the posterior distributions of the parameters in Figure 10 are shown in Figure 11.
We note that the marginal posterior distribution of the sire variance is markedly skewed, suggesting
that there is relatively little information in the data (15 sire families) to infer this parameter. Some
degree of skewness is also noticeable in the posterior distributions of A, and A, pertaining to the
QTL effects. As expected, the residual variance shows little sign of asymmetry. Thus, the conclusion
from this small simulation study is that the graphical model implementation of this Bayesian MCMC
analysis yields the expected results. As with any other implementation, a detailed investigation into
the behaviour of the MCMC samplers should accompany any analysis.

7 Discussion

We have chosen to focus our attention on a very simple QTL mapping model on a very simple
pedigree, the half-sib design, with view to demonstrating a graphical model application which can be
made more general. The actual analysis that we performed by way of demonstrating our approach is
not novel in any way (see George et al. (2000), for example) and the half-sib design is not particularly
interesting in itself. Clearly there are several faults with the design and model presented above. Firstly,
strong selection amongst the bulls leads to an obvious violation of the normality assumptions on sire
effects. Maternal inheritance is completely ignored in the half-sib design, even when data on dams are
available. In reality, all these animals are inter-related in many different ways and the true pedigree
structure which is highly complex is also ignored. The genetic map may be incorrect and marker
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data are frequently incomplete due to typing errors. Finally, a more realistic model for detecting a
QTL would involve multiple highly polymorphic markers with different possible orderings perhaps,
(George et al., 2000) and multiple QTLs. What is interesting, however, is that the half-sib design, once
made realistically large, poses computational problems for an exact calculation on this simple model
and MCMC methods are already required before any of these desirable modifications are considered.
The large cliques which cause the computational problems are transparent in this representation.

(€) Ag (d) Ag

@ pg

Figure 10. Trace plots for the individual parameters.

The point of this paper is not that we claim to be able to deal with computational problems
in genetics which cannot be addressed equally well with existing software and methods. Rather
we propose to lend a new perspective to the handling of computationally intensive problems in
statistical genetics by reformulating the computational problem as a graphical model and exploiting
the expert systems approach to exact probabilistic inference on large graphical model networks.
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One big advantage of this approach is that any programme which computes probabilities on general
graphical models can be used to carry out these analyses. Although the algorithms used on general
Bayesian networks are essentially the same as the peeling algorithms, they are a little more efficient
computationally in that they tend to be less problem-specific and exploit local dependencies to a
greater extent. With the commercially available HUGIN package, for instance, we exploit the efficient
“random propagate” routine for joint sampling of blocks of nodes conditionally on the given values at
all the remaining nodes in the graph to construct a flexible block updating MCMC sampling scheme.
This is a big advantage for the fast development and testing of new methodological approaches in
such a computationally challenging area.

(c) 4, (d) Ay

e) Po

Figure 11. Distribution of samples of the parameters.

It is important to note, however, that performing calculations on general pedigrees is going to be just
as problematic with this representation as with any other, in the sense that large cliques or cutsets will
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cause the peeling algorithms to break down and the MCMC samplers will have the same slow mixing
problems etc. The advantage is that all kinds of complex problems in genetics can be accommodated
by the same program with very little modification. For example, model extensions and extra pedigree
links can easily be incorporated into the graphical model of Figure 9, which was itself extended
from the model of Figure 8, by careful addition of extra nodes, links and associated conditional
probabilities. The easy handling of phase in the sires is particularly elegant in the graphical model
formulation of Section 5 whereas in the Bayesian framework outline in Section 3, the phase problem
grows exponentially with the number of loci in the model. The assumption of linkage equilibrium
in the sire population means that all phases are equally likely and the first segregation indicator
has a Bernoulli (%) distribution. Sampling segregation indicators jointly with the genotype nodes
within HUGIN automatically sums over all phases. Similarly, dealing with missing marker data is
far easier in the graphical model formulation of the problem. Allowing the QTL to move across
different intervals is not so easy in this particular implementation as the current version of HUGIN
does not allow for efficient moving between different networks as would be required in a reversible
jump sampling framework.

There will always be a need for problem-specific software in genetics. A pedigree is, after all, a
very special type of Bayesian network and some modifications to a general programme are required in
order to perform these calculations efficiently. In particular, it is crucial to be able to exploit the often
considerable reductions in complexity imposed by the data. Whole sections of the pedigree might be
uninformative for a given dataset and should be discarded before a peeling sequence is sought. This
process of clipping is equivalent to the requirement that data be entered prior to triangulation of a
Bayesian network. HUGIN, for example, insists on finding a triangulation before the data are entered
whereas a statistical geneticist would always remove the redundant parts of the pedigree before
calculating probabilities. While this particular feature could easily be removed, there are many other
computational shortcuts that a pedigree-specific program would exploit. Consequently, for any given
problem, a general program is bound to compare unfavourably with some purpose-written code.
However, one of the big problems in this area is that rapid biological advances are often such that
existing efficient task-specific software cannot readily be extended and becomes obsolete thereby
impeding quick response to new analytic challenges.

In conclusion, the graphical model provides a powerful and flexible way to view problems in
genetics. Preliminary investigations have indicated that there are huge computational advantages to
be gained from taking this approach and programs are easily modified to cater for a wide range of
problems. In particular, the large complex animal pedigrees which are primarily of interest here, take
us into a category of Bayesian networks on which computations are known to be difficult and thus
present an exciting challenge to the graphical modelling community. Furthermore, the setting of these
large problems in genetics into a more general modelling framework allows for cross-fertilisation of
ideas between the hitherto separate communities of genetics and artificial intelligence.
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Résumé

Les modeles graphiques fournissent une approche efficace et souple pour I’analyse de problémes complexes en génétique.
Alors qu’un logiciel spécifique peut €tre un outil extrémement efficace pour une analyse particuliere, il est souvent difficile
de I'adapter 2 de nouveaux traitements qui vont au-deld de ses fonctionnalités. En considérant les applications génétiques
dans un cadre plus général, on peut utiliser principalement le méme logiciel pour traiter de nombreuses difficultés. Ceci
constitue un atout dans un domaine ol la rapidité des évolutions méthodologiques est fondamentale. Une fois qu’ une méthode
a été completement développée et testée, le recours a un logiciel spécifique peut alors s’imposer. L objectif de I’article est
d’illustrer I’'usage potentiel de I’approche par les modeles graphiques dans les analyses génétiques, en prenant comme exemple
un probléme trés simple et facile 3 comprendre.
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