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An analogue of an antitumor bicyclic hexapeptide RA-VII was prepared, in which the Ala-2 and Tyr-3 res-
idues of RA-VII were replaced by a cycloisodityrosine unit. In the crystalline state, the peptide backbone
structures and the side-chain conformations at Tyr-3, Tyr-5, and Tyr-6 of this analogue and of RA-II were
very similar. This analogue, however, showed much weaker cytotoxicity against P-388 leukemia cells

© 2008 Elsevier Ltd. All rights reserved.

RA-VII (1), isolated from Rubia cordifolia L. and R. akane Nakai
(Rubiaceae) is a bicyclic hexapeptide with a potent antitumor
activity (Fig. 1). The antitumor activities of this compound and also
of bouvardin (NSC 259968, 2)> from Bouvardia ternifolia (Cav.)
Schitdl. (Rubiaceae) which is structurally closely related to 1 are
considered to be due to inhibition of protein synthesis through
interaction with eukaryotic ribosomes.** Recently, 1 was shown
to cause conformational changes in F-actin and stabilization of ac-
tin filaments to induce G2 arrest.® Peptide 1 is known to exist as a
mixture of two or three stable conformers in solution,”® and the
most populated conformer, having trans, trans, trans, trans, cis,
and trans (t-t-t-t-c-t) configuration at the peptide bonds between
p-Ala-1/Ala-2, Ala-2/Tyr-3, Tyr-3/Ala-4, Ala-4/Tyr-5, Tyr-5/Tyr-6,
and Tyr-6/p-Ala-1, respectively, has been identified as an active
conformer.>~'! Of the three tyrosines at positions-3, -5, and -6 in
peptide 1, Tyr-5 and Tyr-6 form a cycloisodityrosine unit by form-
ing a linkage between the phenolic oxygen of Tyr-5 and the C; of
Tyr-6. Due to a planar amide bond and 1,3-disubstituted- and
1,4-disubstituted-phenyl rings included in the 14-membered ring
of the cycloisodityrosine unit, the rotation of the side chains of
those residues is restricted. The remaining side chain at Tyr-3 ro-
tates about the C,—Cg (1) and Cp-Cy (2) bonds. Since the substi-
tuent at the zeta position of Tyr-3 is known to greatly relate to the
activity,'? the y; and y- angles of Tyr-3, defining the spatial orien-
tation of the Tyr-3 phenyl ring, appear to play a critical role in the
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cytotoxicity. In the present study, to obtain information about the
effect of the side-chain conformation of Tyr-3 upon the activity, we
designed an analogue having a restricted Tyr-3 side-chain rotation,
synthesized it, performed its X-ray crystallographic studies, and
evaluated its cytotoxicity.
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Figure 1. Structures of natural RA-series peptides.
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Scheme 1. Synthesis of analogue 3.

Our approach to the application of restriction to the Tyr-3 side-
chain rotation was to introduce a cycloisodityrosine unit in place of
the Ala-2/Tyr-3 moiety of peptide 1, that is, preparation of an ana-
logue having two cycloisodityrosine units in one molecule as
shown in 3 (Fig. 2). In this analogue 3, the rotations about the
Cy—Cg and Cp-C, bonds of Tyr-3 are restricted simultaneously as
in the case of those in Tyr-6. However, Tyr-3 in the newly intro-
duced second cycloisodityrosine unit bears no N-methyl group,
so that, in contrast to the Tyr-5/Tyr-6 bond of the original cycloiso-
dityrosine unit, the Tyr-2/Tyr-3 bond adopts a trans configuration
as in the active conformer of 1.

The route of synthesis of 3 is illustrated in Scheme 1. The start-
ing material, cycloisodityrosine 4, corresponding to Tyr-2 and
Tyr-3 of 3, was prepared from 3-iodo-L-tyrosine according to the
procedure reported previously.'> Compound 4 was deprotected
and coupled with Cbz-p-Ala-OH to afford tripeptide 5, which was
then converted to acid 6. Another portion of 4 was N,N'-dimethy-

lated under phase-transfer catalysis conditions to prepare the
other cycloisodityrosine unit, 7, corresponding to Tyr-5 and Tyr-6
of the analogue. Subsequent conversion of the methyl ester func-
tionality of 7 to a benzyl ester group afforded 8, which, after re-
moval of the Boc group, was coupled with Boc-Ala-OH to afford
tripeptide 9. After deprotection, tripeptide 9 was coupled with acid
6 to give hexapeptide 10. Removal of the N- and C-terminal pro-
tecting groups of 10 and subsequent formation of the macrocycle
with diphenylphosphoryl azide (DPPA) and triethylamine under
high-dilution conditions in DMF (0.001 M) furnished 3 in 45% yield
from 10.

The solution structure of thus obtained analogue 3 was ana-
lyzed by the NMR experiments. In CDCl5 at 300 K, analogue 3 gave
a single set of sharp peaks (Fig. 3),!* suggesting that only one single
conformer was present in this solution. The amide configuration of
this solution structure was determined by analysis of NOESY data.
From the NOE correlations between p-Ala-1 H-a/Tyr-2 NH and be-



JMMWM B AM{ .JLJJWMWLJUL___J

J.-E. Lee et al./Bioorg. Med. Chem. Lett. 18 (2008) 6458-6461

T T T T

4.0 3.0 2.0 1.0

5/ ppm

Figure 3. Five hundred megahertz 'H NMR spectrum of analogue 3 in CDCls.
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Figure 4. ORTEP representation of analogue 3.
Table 1

X-ray calculated backbone dihedrals (degree) in analogue 3.

Residue Dihedral angle Residue Dihedral angle
p-Ala-1 ¢ 136.3(3) Ala-4 ¢ —164.5(3)
1] -129.2(3) 1] 156.4(3)
» 178.3(3) [0} 176.3(3)
Tyr-2 @ —141.7(3) Tyr-5 @ —115.5(3)
1] 116.6(3) 1] 111.1(3)
@) -162.7(3) @) —21.3(4)
Tyr-3 ) 49.1(4) Tyr-6 1 —75.7(4)
1] 49.3(4) 1] -179.7(3)
0] —174.8(3) w 176.8(3)

tween p-Ala-1 Me/Tyr-2 NH, the amide bond between p-Ala-1/Tyr-
2 was determined to be trans, and from the correlations between
Tyr-2 H-o/Tyr-3 NH, the amide bond between Tyr-2/Tyr-3 to be
trans. Analogously, from the correlations between Tyr-3 H-a/Ala-
4 NH, Ala-4 H-o/Tyr-5 NMe, Ala-4 Me/Tyr-5 NMe, Tyr-5 H-o/Tyr-
6 H-o, and Tyr-6 H-o/p-Ala-1 NH, the amide bonds between Tyr-
3/Ala-4, Ala-4/Tyr-5, Tyr-5/Tyr-6, and Tyr-6/p-Ala-1 were deter-
mined to be trans, trans, cis, and trans, respectively, to show the se-
quence of the amide configurations of 3 to be t-t-t-t-c-t as in the
active conformer of 1. In addition, an NOE correlation between p-
Ala-1 H-oi/Ala-4 Me was observed. Such a transannular cross-peak
was also observed in the conformer of natural RAs having t-t-t-t-
c-t configuration.'” The structure in the solid state was obtained by
the crystallography of 3 (Fig. 4).!® The results showed that the crys-
tal structure of 3 was basically identical to the solution structure of
3 in CDCl3, derived from its NOESY experiments. The amide config-

Figure 5. Superposition of the crystal structures of analogue 3 (red) and RA-II (11,
blue).
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uration of the crystal structure of 3 was also t-t-t-t—c-t (Table 1)
and the distance between p-Ala-1 H-o and the nearest methyl
hydrogen of Ala-4, responsible for the above mentioned significant
NOE correlation in 3, was 2.38 A. This distance is reasonable for
producing an NOE cross-peak.

The similarity in the three-dimensional structural features of 1
and 3 was highlighted by superimposing the crystal structure of 3
over that of RA-II (11),!7 whose conformational property is known
to be identical to that of 1 and whose crystallographic data are
available (Fig. 5).!® The spatial positions of the phenyl rings of
the three tyrosines and the peptide backbone conformation at res-
idues 2-6 of these two peptides 3 and 11 are almost superimpos-
able, which indicated that analogue 3 may effectively mimic one of
the lowest-energy conformations in peptide 1 including the side
chain of Tyr-3.

Analogue 3 and as reference, 1, were evaluated for their cyto-
toxicity against P-388 leukemia cells. Their ICso values were 7.5
and 0.0015 pg/mlL, respectively. The result apparently does not
agree with our hypothesis that the side-chain conformation at
Tyr-3 of peptide 1, as shown in the crystal structure of 11, is a ma-
jor factor which determines the cytotoxic activity of the com-
pounds of this series. The bulky phenoxy tether connecting the
Cg of Ala-2 and the C¢ of Tyr-3 in the present compound 3, how-
ever, may be hampering its necessary close access to the relevant
binding site, resulting in giving low cytotoxicity. Synthesis of fur-
ther analogues and their analyses may give further information
to this problem.
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