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Reactivity of aromatic compounds toward diphenylcarbonyl oxide 
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The reactivity of organic compounds (Phil, PhMe, PhF. PhCI, PhOH, PhOEt, PhCHO, 
Ph2CO, PhCN, Ph2S. Ph2SO, Ph2SO2, and p-Me2CrH4) toward diphenylcarbonyl oxide 
Ph2COO was characterized by the k33/k31 ratio, where k33 and k31 are the rate constants for 
the reactions of Ph2COO with the arene and diphenyldiazomethane Ph2CN2, respectively. 
The values of k33/k31 vary from 2.6-10 -3 (PhCN) to 0.65 (Ph2S) (70 ~ MeCN). The 
reaction is preceded by formation of a complex with charge transfer from a substrate to 
Ph2COO. In the reactions with aromatic substances (except for Ph2SO, PhCHO, and 
Ph2CO), carbonyl oxide behaves as an etectrophile. 
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Thermal  decompos i t i on  o f  d ipheny ld iazomethane  
RN 2 (R = Ph2 C) in the presence of  oxygen is accompa-  
nied by chemi luminescence  (CL) in the visible region, 
emitted by triplet excited benzophenone  3R=O. t This 
compound  was shown z to result f rom the react ion o f  
diphenylcarbonyl  oxide R O O  formed intermediately with 
the initial RN 2 molecule .  In the present work, quench-  
ing o f  the C L  of  this light step was used to study the 
relative reactivities o f  R O O  toward a number  of  substi- 
tuted arenes: P h i l ,  PhMe,  PhF,  PhCI, P h O H ,  PhOEt ,  
P h C H O ,  Ph2CO, P h C N ,  PhSPh,  Ph2SO, Ph2SO 2, and 
p-Me2C6H4. 

E x p e r i m e n t a l  

Thermolysis of RN 2 was carried out at 70 ~ in MeCN; the 
initial concentrations [RN2] 0 and [O2J 0 in the solution were 
(0.55--1.7)" 10 -3 and (0.7--3.5)- 10 -3 mol L - l ,  respectively. 

Acetonitrile and aromatic compounds were purified by 
standard procedures. 3,4 RN 2 were synthesized and purified by 
known procedures, s 

The CL setup consisted of a lightproof chamber containing 
a glass reactor maintained at a constant temperature and 
equipped with a thermocouple, a bubbler for the supply of a 
gas mixture (air, oxygen, or Ar : O 2 = 50 : 50% v/v), a reflux 
condenser, and a system for quick introduction of solutions of 
aromatic substrates. An FEU-39 or FEU-148 photoelectric 
multiplier was used as the emission detector. 

R e s u l t s  a n d  D i s c u s s i o n  

The  m e c h a n i s m  of  t h e r m a l  d e c o m p o s i t i o n  o f  
d ipheny ld iazomethane  in the R N 2 - - O 2 - - M e C N  system 

without active additives includes the following main 
reactions: z 

RN 2 ~,- 1R 4- N 2 (0) 

IR _ "-- 3R (ST,TS) 

31=I + RN 2 - - ~  R=N- -N=R (2.1) 

aR + 02 ~ ROO (2.2) 

ROO + RN 2 . . . . .  R=O + 3R=O + N 2 (3.1) 

3R=O ~ R--O (4.0) 

3R=O + RN2 - - ~  P41 (4.1) 

3R=O 4- 0 2 " P42 (4.2) 

From here on, Pi is the product  o f  a chemica l  reaction 
or  physical quenching  in step (i). 

In accordance wittl this scheme,  the intensity o f  CL 
in a steady-state regime is described by the following 
equat ion:  

k.,2 [021 
I0 = (P31~40 k21[RN2} + k2,[O~] x 

- - ( l )  

x k4~ . ko[RN2 l 
k40 + k4j[RN 2 ] + k42[O2] 

After in t roduct ion o f  a romat ic  substrate Q into the 
R N 2 - - O 2 - - M e C N  system, the intensi ty o f  C L  rapidly 
decreases to reach a new steady-state value [ (see Fig. I). 
In the case o f  benzaldehyde,  fast quench ing  of  C L  is 
first observed, and then the emission intensity slowly 
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Fig. I. Quenching of chemiluminescence m the RN2--O 2 -  
MeCN system (70 ~ after addition of solutions of PhF (1) 
and PhCHO (2). The arrows mark the instances of the intro- 
duction of a substrate. 

increases. For other arenes, kinetic curves for the varia- 
tion of intensity [ are similar to curve 1 shown in Fig. 1 
as an example. 

The dependence of / (in relative units) on the con- 
tent of an arene in the solution is presented in Table 1, 
whose analysis shows that in all the systems studied, the 
empirical equation 

Io/I = t + aQ-[Qt, (ll) 

where aQ is a proportionality factor, holds with a high, 
coefficient of correlation (>_0.99). The results of deter- 
ruination of the empirical parameter aQ are summarized 
in Table 1. 

In the presence of substrate Q, the above-presented 
mechanism should be supplemented by the following 
steps: 

~R + Q ~ P~3 (t.3) 

3 R 4- Q ~ P23 (2.3) 

ROO + Q ." P33 (3.3) 

3R=O + Q " P43 (4.3) 

A c c o r d i n g  to a p r e v i o u s  p u b l i c a t i o n ,  ~ ksT = 
3.2" 109 S-t; therefore, even when the k13 values are 
controlled by diffusion, the rate of reaction (1.3) under 
conditions of our experiments (low [Q]) is negligibly 
small compared to the rate of the virtually irreversible 
reaction (ST). 

The rate constant k22 = 5" 109 L tool -z s-I. 7 For 
Ph2S, which is among the most reactive substrates in the 
series studied here, k23 = 1.7- 106 L tool - l  s -I $ and 
the ratio of the rates of steps (2.2) and (2.3) amounts to 
wr2/w~, 3 = k2.~[O21/k:,.dPhzS I = 700. For other aromatic 
compounds, this ratio is also fairly high, which makes it 
possible to neglect reaction (2.3) for all the substrates Q. 

Let us estimate the w42/w43 ratio. According to 
the data reported previottsly,  9-11 k42 = (2-- 
3)" 109 L tool -I s -j .  It was found  12 that for aromatic 
compounds 

log/q3 --- (26.4+_3.0) - (2.38+_0.37) - IP (r = 0.988), (lIl) 

where IP is the first ionization potent ial  of an arene. 
Using the k42 value given above and the k43 values 

roughly estimated from Eq. ( I I I )  (see Table 2) we ob- 
tain w4z/w43 = k42[Ozl/k43[Q ] .~. 10--3-104, i.e., reac- 
tion (4.3) also can be neglected. 

Thus, of the reactions presented above, only reaction 
(3.3) is kinetic,ally significant in the mechanism of ther- 
mal decomposition of RN 2 in the  presence of Q. Taking 
account of this, we obtain the following expression for 
the steady-state intensity of CL: 

I = tp3t~4 0 ' ABC" Ro[RN2] ,  ( IV)  

A = k22[O21 
k21 [RN~. I + k22[O21 

B = k3t[RN2] 
k31[RN2] + k331021 " 

C - k~~ 
k40 + k41 [ RN2 ] ~" k42 [02 ] 

',P31 and q~40 are quantum yields o f  excitation and emis- 
sion of triplet benzophenone, respectively (the numbers 
of steps correspond to those accepted in Re['. 2). 

When the concentrations of O 2 and RN 2 are con- 
stant under reaction conditions, it follows from Eqs. (I) 
and (IV) that 

t o = t  + k~3iQl (V) 
1 k31[RN2] " 

For aQ = /r the latter equation coin- 
cides with empirical formula ([[) ,  which makes it pos- 
sible to determine the k33/k31 ratio of rate constants 
(Table 2) and to calculate the k:33/k33 ~ value (the rate 
constant g33 ~ refers to the reaction of ROO with ben- 
Z e l l e ) .  

The nature of the substituent in  the aromatic ring has 
a substantial influence on the reactivity of the substrate 
(Table 2). Thus on going from P h C N  to Ph2S, the k3~/~.3~ 
ratio and, hence, the rate constant k33 increases 250-fold. 

Figure 2 presents the plot of log(k33/k3t) against 
ionization potentials of arenes; this  plot suggests inter- 
mediate formation of a charge transfer complex (CTC) 
and, without consideration of Ph2SO , Ph2CHO, and 
PhOEt, it can be described by the  following equation: 

Iog(k33/k31 ) = (8.9+_2.1) - ( 1 . 1 9 + 0 . 2 4 ) "  IP,  r = 0.966. 

We checked the observance o f  one- and two-param- 
eter Hammett equations in the  series of compounds 
studied: 

logk = logk 0 + p'rr, (VI) 

Iogk = Iogk 0 + Pind �9 Gind -t- Pres " ~ (VII) 
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TaMe 1. Quenching of CL in thc RN2~-O2--MeCN system by aromatic compounds 

Con]pound [RN2t IQI" 102 ]0 ~ aQ 

Phil 5.5- 10 -a 0 100 21.3+_0.6 
2.3 69.6 
4.5 50.6 
6.8 4l .I 
9.0 34.8 

I 1.3 29.1 
Phil ~ 1.1" 10 -3 0 100 8.81+0.55 PhCN 

2.3 86.4 
4.5 72.8 
6.8 64.1 
9.0 55.4 

I 1.3 49.5 
PhMe a 1.1" 10 -3 0 100 38.1+3.9 Ph2CO 

1.9 6O.0 
3.8 43.8 
5.6 32.5 
7.5 25.O 

p-Me2CoH 4 1.0. 10 -3 0 100 95.5+6.6 PhF a 
1.6 4O.9 
3.3 24.7 
4.9 18.3 
6.5 13.4 

Ph2S a 5.5' 10 -4 0 100 1040+-58 PhOH 
0.06 64.1 
0.12 45.3 
0.18 35.2 
0.24 28.1 
0.30 21.9 

Ph2S a 1.1 �9 10 -3 0 100 668+_22 PhOH 
0.06 72.0 
0.12 56.7 
0.18 45.1 
0.24 37.8 
0.30 33.5 

Ph2SO 1.0" 10 -3 0 100 177+7 PhOEt 
0.20 75.8 
0.4O 60.0 
0.6O 49.5 
0.80 41 .I. 
1.00 35.8  

Ph2SO 2 1.1 �9 10 -3 0 I00 2.53+0.18 PhCHO a 
1.1 96.6 
2.2 94.6 
4.4 89.3 

l 1.0 78.5 

PhCI 5.5 �9 10 -4 0 100 11.0+-0.5 PhCHO b 
2.0 81.7 
3.9 71.2 
5.9 62.0 
7.9 52.9 
9.8 48.1 

Compound [RN,~I [Q]'  102 lo s ao 

PhCI 1.1. 10 -3 6.01+_0.15 

1.1 l0 -3 

1.1 �9 10 -.3 

1.0 t0 -3 

5.5 t0 -4 

I.I 10 -3 

1.0 t0 -3 

1.7 l0 -3 

1.7 10 -3 

0 I00 
2.0 89.6 
5_9 73.6 
9.8 62.4 

I1.8 58.4 
13.8 55.2 
0 100 2.40+0.!6 
2.0 96.5 
3.9 91.8 
5.9 87.6 
7.8 83.5 
9.8 8O.O 
0 100 15.44-0.6 
O.9 86.1 
2.0 77.8 
2.7 70.9 
4.O 62.0 
4.5 58.9 
0 100 8.00+__0.32 
2.1 84.0 
4.3 73.7 
6.4 65.4 
8.5 59.6 

10.7 54.5 
0 100 227+5 
0.2t 69.6 
0.41 51.9 
0.60 42.2 
0.79 36.3 
O.96 31.1 
0 I00 132+_15 
0.21 83.4 
0.4t 69.5 
0.60 57.8 
0.79 48. I 
0.96 42.8 
0 100 51.9+_2.3 
0.8 69.4 
2.6 43.5 
4.5 29.5 
6.3 23.5 

0 100 14.3+_1.3 
0.39 92.6 
0.78 89.3 
1.18 85.5 
1.57 82.0 
1.96 78.7 
0 100 12.8+_0.9 
0.39 94.3 
0.78 90.9 
1.18 87.0 
1.57 83.3 

Note: 70 ~ the concentrations are expressed in mol L-t;  the intensities (10 s) are given in relative units; bubbling of an Ar : O~ 
mi• (50 : 50% v/v). 
a Bubbling of air. t, Bubbling of oxygen. 

Two sets o f  induct ive ~ -con ta ins  were used: ot (in 
the t w o - p a r a m e t e r  equa t ion ,  the effect o f  conjugat ion 
was taken into account  by ~c  ~ constants)  and ~o (in 
combina t ion  with tr +, to charac ter ize  the polar  conjuga-  

tion of  the subst i tuent  in the aromat ic  ring). The cq-scale 
was cons t ruc ted  using the summar ies  presented  in previ-  
ous publicat ions,  Is,19 aud the  missing values were taken 
from a handbook.  2~ The  scale of  the tx ~ cons tan ts  was 
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log(k33/k 31 ) 

S 
-0.5 ~ SOPh 

" ~OH 
- I  .0 ~ , Q '  

a Me 
p-Me 2 " ~  

[.5 . X ~ O P h  u C [ . I O  

-2.0 ex,~ H 
F �9 

-2 .5  c N  

-3.0 A J , , ~ 

7.5 8.0 8.5 9.0 9.5 10.0 IP/eV 
Hg. 2. The relationship between the relative rate constants 
k33/k31 and the first ionization potentials (I P) for the substrate Q. 

based on published data. 17 For  sulfur-containing sub- 
sti tuents and for O H  and C H O  groups,  the a ~ values 
were taken from a previous study, t6 

Analysis o f  the exper imenta l  data in terms of  Eqs. 
(VI) and (VII) showed that in the general case, no 
satisfactory corre la t ion  is actually observed; in our opin-  
iota, this means  that  the reaction follows several mecha-  
nisms depending  on the structure o f  the substrate. In 
fact ,  a t t e n t i o n  is a t t r ac t ed  to the  d e p e n d e n c e  o f  
Iog(k33/k330) on the a ~ constants  o f  substituents X shown 
in Fig. 3 (constants  for the para-posi t ion were used as 
(r ~ because these constants  are not purely inductive zl 
but contain a certain contr ibut ion  (~57%) of  the reso-" 
nance const i tuent) .  

Table 2. Relative rate constants for the reaction of diphenylcarbo- 
nyl oxide with aromatic substrates (MeCN as the solvent, 70 ~ 

Entry. Q ip ,  do b k43 . 10-5 c (k33/k3j) . 
/eV /L  tool - t  S -1 " 10x 

I PhCN 9.71 0.70 0.02 0.26&0.02 
2 PhCHO 9.51 0.43 0.06 2.3+0.2 
3 Ph2SO~ 9.37 0.66 0.13 0.28• 
4 Phil 9.25 0.00 0.18 1.1+0.1 
5 PhF 9.20 0.18 0.34 0.80+0.03 
6 Ph2CO 9.14 0.46 0.46 1.7+_0.1 
7 PhCI 9.08 0.29 0.64 0.63+0.03 
8 PhMe 8.82 -0.10 5.20 4.24-0.4 
9 Ph2SO 8.58 050 10 17.7+_1 
10 PhOH 8.50 -0.22 15 13.55:1 
11 p-Me2C6H 4 8.44 -0.20 21 9.6:L0.7 
12 PhOEt 8.13 -0.14 II0 5.2+0.7 
13 Ph2S 7.80 O. 13 700 65+-8 

a Ionization potentials for Ph,SO and Ph2SO 2 were taken from 
Refs. 20 and 21, those for other compounds were taken from 
Ref. 22. b The a ~ values for Ph2CO, PhOH, and for sulfur- 
containing compounds were taken from Ref. 23, those for 
other compounds were taken from Ref. 24. 
e Calculated from Eq. (liD. 

log(k33/k 31 ~ 
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Fig. 3. Dependence of tog(k33/k31 ~ for aromatic compounds 
on the inductive constants or~ for electron-withdrawing sub- 
stituents (1) and for electron-donating substituents (7) in the 
aromatic ring. 

It can be seen from Fig. 3 t h a t  the  plot consists of  
two linear sections intersecting a t  X = H. For  e lec t ron-  
donat ing substituents (H,  Me,  p - M e 2 ,  O H ,  OEt)  

log(k33/k33 ~ = (-4.92.+_0.47) - erp ~ r = 0.998. 

For e lec t ron-wi thdrawing subs t i tuents  (H,  CI, F, 
S02Ph ,  CN)  

log(k33/k33 ~ = (-0_89+0.04) . c% ~ r = 0.9995. 

The negative values of  the react ion constants  p0 
point to an electrophil ic  nature o f  R O O  in the reaction 
with these substrates. 

In the light of  the obtained da ta ,  it can be suggested 
that the reaction of  d ipheny lca rbony l  oxide with aro- 
matic compounds  starts with t he  format ion  o f  a CTC:  

ROO + O . [ R O O - ' . . . Q * ' ] .  

Note  that CTCs  formed by a r o m a t i c  c o m p o u n d s  and 
polyoxide species such as o z o n e  n and oxygen z3 have 
been detected previously. 

Then  the process follows e i t h e r  a nuc leophi l ic  or  an 
electrophil ic  mechan ism d e p e n d i n g  on the nature o f  the 
substituent in the  aromat ic  ring. 

The former case is realized fo r  P h C H O ,  Ph2CO, and 
Ph2SO as a nucleophi l ic  at tack by  carbonyl  oxide on the 
substituent,  z4-z8 for example  

[ Ph\  /H  ~ O O 
ROO + PhCHO ~ |ROO . . . . .  C --- Ph.,. I I .,.Ph 

{ II I p h / C ' o / C " H  
L o j 

ROO + P ~ S O  .. [ oo%s J'"" 
II L o J 

,, R = O  + Ph2SO 2. 
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In the case where carbonyl oxide attacks the aro- 
matic ring, the process occurs by an electrophil ic  mecha-  
nism. z9 These reactions are known 25 to give the corre-  
sponding phenols.  The different types of  influence of  
e lec t ron-dona t ing  and e lec t ron-wi thdrawing substituents 
on the magnitude o f  9 ~ can be explained in terms of  the 
following scheme:  

R o o  + Q 

-R=O : 

X X 

-R=O 

X 

X 

Donors of  e lectron density increase the degree of  
charge transfer in C T C  (Fig. 2). The  resulting peroxy 
anion is coordinated  to a carbon a tom in the aromatic  
ring; this is followed by a rearrangement  to give a 
hydroxy derivative. 

Elect ron-wi thdrawing substituents are responsible for 
low degrees o f  charge transfer in the ROO. . .Q  complex.  
In this case, exchange  e lec t ronic  interact ions prevail; 
this leads to the  in termedia te  format ion of  arene ox-  
ide zs-3z and subsequent  opening of  the t h r e e - m e m -  
bered ring. 

The  point of  intersect ion o f  straight lines 1 and 2 
(Fig. 3), which falls on the unsubsti tuted compound ,  
corresponds to transi t ion from one  pathway to phenol  to 
another.  

Thus, our  study has shown that carbonyl oxides are 
similar  in their  chemica l  properties to o ther  peroxide 
oxidative agents, namely,  singlet oxygen and, first of  all, 
ozone.  They are efficient reagents for insert ion of  an 
oxygen atom into the substrate being oxidized, The 
presence o f  a x -e lec t ron ic  system in the substrate ac- 
counts  for the possibility o f  a compe t ing  oxidat ion route 
involving the in te rmedia te  format ion  of  a charge transfer 
complex.  This is reflected in the complex  character  of  
influence of  the e lec t ronic  effects of  substituents on the 
react ion rate. 

The authors are grateful to A. I. Voloshin for assis- 
tance in the work and useful discussion. 
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