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Abstract: The marine natural product (+)-pectinatone containing 'skip' 1,3-dimethyl stereocentres was 
synthesised via the iterative alkylation of propanal SAMP-hydrazone with D-branched iodides. Factors 
affecting the selectivity of the alkylation reaction and the in situ formation of volatile D-branched iodides are 
described. © 1998 Elsevier Science Ltd. All rights reserved. 

We wish to report here our efforts towards the development of a general method for the 
stereoselective synthesis of natural products, containing a fully reduced, polypropionate derived 'skip' 1,3- 
dimethyl motif[l]. Although several approaches to these arrays have been reported[2], perhaps the most 
attractive route is that first suggested by Evans et al., based on the iterative asymmetric alkylation with 9- 
branched iodides[3]. The relatively low reactivity and instability of many chiral enolate reagents has 
necessitated the use of highly reactive D-branched triflates and/or the use of HMPA as co-solvent[3-5]. 
Recently, Myers et al. described the alkylation of pseudoephedrine derived amide enolates to give 'skip' 
1,3-dimethyl arrays in excellent yields and selectivities[6]. Despite displaying good stability at ambient 
temperature, these amide enolates are still plagued by low reactivity, taking in the order of 6-20 hours at 
ambient temperature to react with D-branched iodides. 

In contrast, the highly reactive aza-enolates derived from SAMP hydrazones react readily with 
secondary iodides and B-branched iodides and bromides at low temperatures[7]. We sought to apply these 
encouraging results to the synthesis of 'skip' 1,3-dimethyl arrays present in certain natural products. 
Another attractive feature of the aldehyde SAMP-hydrazone alkylation is the direct accessibility of aldehydes 
upon cleavage. The known hydrazone A, derived from propanal was utilised as the source of the methyl 
stereogenic centre[8]. Generation of the aza-enolate, alkylation, hydrazone cleavage, reduction to the 
alcohol and finally conversion into the iodide B gives the first methyl stereocentre. Further iteration 
generates the 'skip' 1,3-motif C (Scheme 1). 
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Control quench experiments indicated that treatment of the hydrazone A with lithium 
tetramethylpiperidide (LiTMP) gave complete deprotonation in less than 30 minutes at 0°C[9]. Alkylation of 
the aza-enolate with n-propyl iodide at -78°C gave the hydrazone 1 as a 97:3 mixture of diastereoisomers 
(94% de)J10]. Although the oxidative cleavage of the SAMP hydrazone could be conveniently achieved 
using ozone, the susceptibility of the liberated aldehyde to further oxidation under the reaction conditions 
was problematic giving variable yields[11]. We chose therefore, to employ the salt method[8] which gave 
good yields of the aldehyde 2 ready for subsequent transformations. Reduction of the aldehyde 2 was 
conveniently carded out using borane dimethyl sulfide complex[8]. The alcohol 3 was directly derivatised 
as the nosylate 4. A small portion was also converted into the Mosher ester[12] which indicated that 
cleavage of the hydrazone and reduction of the aldehyde had proceeded with no detectable racemisation. 

Upon the scale up of this 4 step sequence as a reduction by-product a sulfmic ester was obtained[13]. 
This by-product was formed in appreciable amounts (10-15%) from both the ozonolytic and salt cleavage 
methods to liberate the corresponding aldehyde from 6. Indeed, employing tetrabutyl ammonium 
borohydride[14] in the reduction of the aldehyde gave this by-product in 38% overall yield. The 
involvement of iodide was implicated following the isolation of iodine from some reactions. Through the 
washing of the salt hydrolysis reaction mixture with aqueous sodium sulfite and purifying the aldehyde by 
filtration through a plug of silica this troublesome side reaction was effectively suppressed giving the 
sulfonate 4 in 30% overall yield from A (75% per step). All attempts to alkylate the azaenolate derived 
from A with the nosylate 4 resulted only low conversions (< 15%). 

We envisaged that the in situ conversion of the sulfonate 4 to the iodide 5 and subsequent alkylation 
would prove useful in the manipulation of volatile alkyl iodides as compared with the usual PPh 3, 12, 
imidazol protocol. Employing, the crystalline nosylate 4, iodide displacement occurred rapidly at ambient 
temperature in THF[15]. Although, the precipitated lithium sulfonate salt appeared to adversely effect the 
alkylation reaction the addition of two volumes of pentane to the mixture effectively overcame this 
problem[16]. Inverse addition of the aza-enolate of A to a solution of the in situ iodide 5 gave the desired 
hydrazone 6 (86% de overall ). Quatemization, acidic hydrolysis and subsequent reduction gave the 
alcohol which without further purification was converted into the nosylate 8 in 32% overall yield from 4 
(80% per step, 86% de overall). Separation of the minor diastereoisomer by flash chromatography was 
unfortunately not possible at this stage[17]. In situ conversion into the iodide as before, alkylation with the 
aza-enolate derived from A, quatemization, acidic hydolysis and then reaction with phosphorane gave the 
a,13-unsaturated ester 8 in 52% overall yield (85% per step, 9:1 mixture of alkene isomers). Conversion 
into the Weinreb amide 9118] in good yield was readily achieved using the Merck protocol[19]. This 
intermediate has been used in the total synthesis of siphonarienone and thus represents a formal total 
synthesis of this natural product[5]. 

We chose to use this intermediate Weinreb amide 9 in the first synthesis of (+)-pectinatone (11) 
isolated from Siphonaria sp. molluscs which displays anti-bacterial, anti-fungal and cytotoxic activity[20]. 
The dialkylated acetoacetate ester required for the formation of the pyrone ring was prepared following the 
method of Weiler[21 ]. Generation of the ~-ketoester dianion using LDA and addition to the amide 9 at 0°C 
occurred smoothly to give the tricarbonyl intermediate[22]. Warming of the reaction mixture to ambient 
temperature gave increasing amounts of the amide 10 as by-product. Treatment of the crude reaction 
mixture with DBU in boiling toluene[23] to effect cyclisation to the a-pyrone gave pectinatone 11 in 29% 
overall yield (35% recovered starting material) (Scheme 2). Synthetic pectinatone 11 was spectroscopically 
identical to the natural product[20]. In conclusion, we have demonstrated that these 'skip' 1,3 motifs can 
be rapidly and efficiently constructed using the SAMP hydrazone method allowing the synthesis of many of 
these natural products[20,24]. A full report on the iterative construction of both syn and ant/ 'skip' 1,3,n 
methyl stereocentres will be published in due course. 
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Reagents end Conditions: e) LiTMP, THF, 0.5M, 0 °C, 45 min b) n-propyl iodide, -78 °C c) Mel, 
reflux, 90 min then 4N HCI,pentane, 90 min d) BH3.Me2S, 0 °C, then MeOH and HCI e) 4-nitrophanyl 
sulfonyl chloride, pyridine, DMAP, CH2CI 2, rt f) Lil, THF, 1 M, rt, 3 h, then pentane and -78 °C g) 
hydrazone A, a) and inverse addition -78 °C h) Ph3PC(CH3)CO2Et, toluene, reflux, 5 h i) N-methoxy, 
N-methyl amine.HCI, 2eq iPrMgCI, THF, -20 °C-0 °C, 64% j) LDA, THF, 0 °C, CH3CH2COCH(CH3)CO2Et, 
inverse addition, then DBU, toluene, reflux, 3h, 29% overall (35% recovered starting material) and 20% 
amide 10. 
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