In Situ Monitoring of the NaCl + HNO₃ Surface Reaction: The Observation of Mobile Surface Strings

Christopher D. Zangmeister and Jeanne E. Pemberton*

Department of Chemistry, University of Arizona, Tucson, Arizona 85721 Received: July 8, 1998; In Final Form: August 24, 1998

The reaction of single-crystal NaCl(100) with dry HNO₃ was monitored using atomic force microscopy in contact mode. Initial exposure to dry HNO₃ results in the growth of a two-dimensional metastable layer of NaNO₃ to nearly complete surface coverage. Exposure of this metastable NaNO₃ layer to small amounts of H_2O produces deliquescence of the surface with concomitant rearrangement of the NaNO₃ adlayer to form unusual mobile "strings" presumed to contain NaNO₃. These strings are transient and eventually crystallize to form rhombohedral NaNO₃ crystals sitting on top of the NaCl surface.

Reactions of particulate NaCl formed from evaporated sea salt aerosols with nitrogen oxides have received considerable attention in recent years owing to potential terrestrial atmospheric implications for the formation of reactive chlorinated species.^{1–10} These NaCl particles undergo heterogeneous reactions with trace gases to form products that are Cl⁻ deficient.¹¹ The formation of gaseous HCl in the terrestrial atmosphere has been hypothesized to be linked to such reactions.¹²

One such reaction is that of vapor-phase HNO₃ with NaCl as shown below:

$$HNO_3(g) + NaCl(s) \rightarrow NaNO_3(s) + HCl(g)$$
 (1)

The mechanism and kinetics of reaction 1 have been extensively studied, 1,4,7,8,10 and it has been shown that the reaction probability is increased by the presence of surface defects and adsorbed H₂O.^{1,4,7-10} H₂O adlayers allow dissolution of the surface to form a saturated NaCl solution (surface deliquescence) into which HNO₃ can diffuse and react.

Previous work has shown that upon exposure of NaCl to HNO₃, a layer of 1-2 monolayers of NaNO₃ caps the surface, thereby protecting it from further reaction.^{8,9} Upon addition of H₂O, the surface rearranges to form crystals of NaNO₃ sitting on top of the NaCl, exposing fresh NaCl that reacts further with HNO₃.^{1,4,7-9} X-ray photoelectron spectroscopy (XPS) results indicate that upon exposure of this surface to H₂O at relative humidities (RH) well below the deliquescence point of NaCl, ca. 80% of the surface becomes fresh NaCl after this NaNO₃ rearrangement.^{8,9} The remaining 20% of the surface is comprised of rhombohedral NaNO₃ crystals⁸ as shown by transmission electron microscopy.⁹

The reaction of single-crystal NaCl(100) with dry HNO_3 vapor using contact atomic force microscopy (AFM) is reported here with the goal of better elucidating the mechanism of NaNO₃ crystal growth. This reaction is attractive for study, because its reaction kinetics are compatible with AFM imaging times and control of HNO_3 and H_2O exposure is readily achieved.

A Digital Instruments Nanoscope IIIa AFM in contact mode was used for these experiments. Previous work has shown that contact AFM is not destructive to either NaCl or NaNO₃ surfaces.¹³⁻¹⁵ Calibrated aliquots of dry HNO₃ headspace¹ over a HNO₃/H₂SO₄ solution or saturated H₂O headspace over liquid H₂O were delivered via syringe injections to a glass gastight AFM cell (Digital Instruments, model FC) containing a NaCl-(100) crystal (International Crystal Laboratories.) On the basis of the geometric parameters of the gastight AFM cell, the cell volume is estimated to be ca. 8×10^{-2} cm³ (3×10^{-6} mol at STP). Images were collected in situ as the reaction proceeded using a 2 Hz scan rate to ensure high image quality and fast acquisition times (4 min/image.) The average RH of the ambient air during these experiments was ca. $14 \pm 3\%$. Thus, the NaCl(100) surfaces were not yet covered by a full monolayer of adsorbed H₂O, since it has been shown that, at RH below 30%, H₂O adsorbs as two-dimensional clusters.¹⁶

Prior to analysis, a 1 cm \times 1 cm single-crystal NaCl(100) was freshly cleaved in ambient air and mounted in the gastight cell. Aliquots of dry HNO₃ and H₂O vapor were dosed onto the NaCl surface as appropriate. Although very small amounts of NO₂ and H₂O might be present in the dosed vapor from dissociated HNO₃ vapor, the amounts of these species, if present, are too low to detect by mass spectrometry⁷ and are therefore assumed to be negligible. It is further assumed that the uptake of dosed species by the AFM cell walls is negligible. Image acquisition was initiated immediately after dosing.

Three 5 μ m \times 5 μ m AFM images collected prior to and after dry HNO₃ dosing are shown in Figure 1. Figure 1a shows a contact AFM image of freshly cleaved NaCl(100) prior to HNO3 dosing. Monotomic steps (0.56 nm) are observed across the surface. After the addition of 1 mL of dry HNO₃ (4 \times 10⁻⁵ mol/cm³), a metastable NaNO₃ layer forms as shown in Figure 1b. For a dose of this volume, a NaNO₃ layer caps the NaCl within 4 min producing a surface with several small (ca. 10 nm diameter) chimney-like defects. These structures are hypothesized to be small NaNO3 crystals that appear owing to the presence of small amounts of H₂O adsorbed on the NaCl surface. XPS on a VG ESCALAB MKII using Al Ka excitation confirms the presence of a NaNO₃ capping layer at this stage of the reaction sequence. The N 1s and O 1s binding energies are observed at 407.2 and 532.9 eV, respectively, indicative of NaNO₃. Subsequent HNO₃ additions result in no further morphological changes after the capping layer is established.

 $[\]ast$ To whom correspondence should be addressed. Email: pembertn@u.arizona.edu.

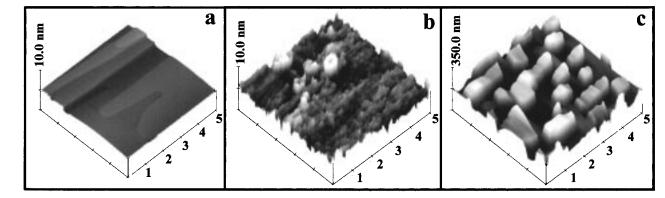


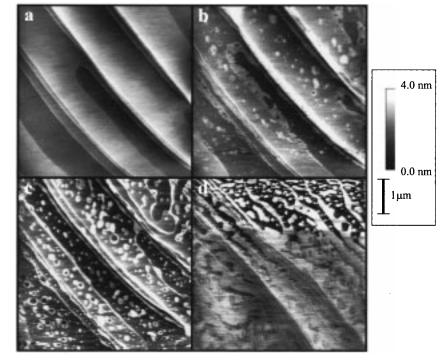
Figure 1. Contact AFM images of (a) NaCl(100) surface prior to HNO₃ exposure; (b) surface in (a) exposed to 4×10^{-5} mol/cm³ HNO₃; (c) subsequent exposure of surface in (b) to 1×10^{-5} mol/cm³ H₂O after (a).

TABLE 1: Roughness Analysis Calculations on NaCl(100) as a Function of Exposur	TABLE 1:	Roughness A	Analysis	Calculations on	NaCl(100)	as a Function	of Exposure
--	----------	-------------	----------	-----------------	-----------	---------------	-------------

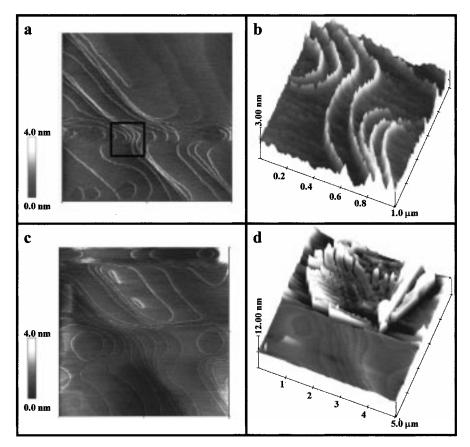
	reactive exposure						
	$4 \times 10^{-5} \text{ mol/cm}^3$ HNO ₃		$\begin{array}{c} 9\times10^{-5}\ mol/cm^{3}\\ HNO_{3}+1\times10^{-5}\\ mol/cm^{3}\ H_{2}O \end{array}$		$\begin{array}{c} 1\times10^{-4}\ \text{mol/cm}^3\\ \text{HNO}_3+1\times10^{-4}\\ \text{mol/cm}^3\ \text{H}_2\text{O} \end{array}$		
total surface area (μ m ²)	25.0	26.3	25.5	26.9	27.3		
surface area above 2 nm (μ m ²)	0.3	6.0	6.6	9.0	12.3		
% surface area above 2 nm	1.2	22.7	26.0	33.3	45.2		
maximum roughness feature height (nm)	32	136	119	203	244		

To study the effect of H_2O exposure on the NaNO₃ capping layer, a 1 mL (1 × 10⁻⁵ mol/cm³) H₂O-saturated headspace vapor aliquot was added to the cell resulting in the image shown in Figure 1c. This volume exceeds the cell volume by a factor of ca. 15; therefore, the entire cell volume remains saturated with H₂O vapor throughout the course of these experiments. Upon H₂O addition, the capping NaNO₃ layer rearranges to form well-defined NaNO₃ "towers" with an average height of ca. 150 nm. These towers are ca. 15 times higher than any of the surface features prior to H₂O exposure (note the *z*-axis scale difference between parts b and c of Figure 1). The regions between the NaNO₃ towers appear to be NaCl(100) based on a maximum feature height of ca. 1 nm.

Quantitative determination of the relative proportions of the NaNO₃ crystal and unreacted NaCl surface areas from these images was undertaken by conservatively assuming that any area above 2 nm was NaNO₃. The results of this analysis are shown in Table 1. Prior to H₂O exposure, only ca. 1% of the surface is above 2 nm in height. After exposure to 1×10^{-5} mol/cm³ of H₂O, ca. 23% of the surface is composed of NaNO₃ crystals. This value is in excellent agreement with previous XPS results, which indicate ca. 20% of the surface as NaNO₃ crystals after H₂O exposure.⁸


Additional doses of H_2O and HNO_3 after this $NaNO_3$ crystallization (Figure 1c) result in an increase in coverage and average height of the $NaNO_3$ crystals. This behavior reflects continued reaction of HNO_3 with the exposed NaCl to form crystalline $NaNO_3$ in the presence of adsorbed H_2O . Thus, the presence of a H_2O adlayer facilitates $NaNO_3$ formation. Presumably, $NaNO_3$ formation occurs as a precipitation reaction from saturated solution as opposed to solid-state reaction.^{4,6}

A second set of contact AFM experiments was performed to monitor the growth of NaNO₃ under lower HNO₃ exposure (ca. 100 times lower exposure than the previous experiments.) Figure 2a shows a 5 μ m × 5 μ m image of a freshly cleaved NaCl(100) surface. Prior to HNO₃ exposure, the surface has numerous monatomic steps running ca. 45° to the scan direction. Figure 2b was acquired 2 min after a 10 μ L aliquot (4 × 10⁻⁷ mol/cm³) of dry HNO₃ was injected into the gastight cell. The surface roughens with HNO₃ exposure, and the growth of what is presumed to be NaNO3 occurs preferentially along step edges. In addition, small spindles of NaNO3 of ca. 1.2 nm in height (ca. 4 monolayers) grow on terrace sites parallel to the step edges. The surface continues to roughen after 24 min exposure to this single aliquot of 4×10^{-7} mol/cm³ HNO₃ vapor (Figure 2c). It is important to note that, at this stage of the reaction, the NaCl(100) surface morphology is generally maintained as the reaction proceeds; surface deliquescence due to adsorbed or dosed H₂O has not yet occurred. To achieve nearly complete coverage by NaNO₃ (Figure 2d), a total of 40 µL of HNO₃ vapor $(1 \times 10^{-6} \text{ mol/cm}^3)$ were injected. A cross-sectional analysis of the image in Figure 2d (not shown) indicates a smoother and thinner NaNO₃ layer capping the underlying NaCl substrate than observed for larger HNO₃ exposures (Figure 1b), and NaCl step edges are still evident.


Exposure of this surface to 1 mL (1×10^{-5} mol/cm³) of H₂Osaturated headspace results in the images shown in Figure 3. This H₂O exposure is sufficient to deliquesce the underlying NaCl surface. The NaCl(100) surface morphology evident in Figure 2a–d is replaced by a collection of unusual "strings" presumed to contain NaNO₃ unevenly distributed over the NaCl surface. Interestingly, these strings do not follow the previously observed step edges of the NaCl(100) surface (Figure 3a).

A magnified 1 μ m × 1 μ m area of Figure 3a is shown in Figure 3b. The NaNO₃-containing strings are clearly evident in this presentation and are observed independent of the scan direction. Small (<0.2 nm) roughness features evident in Figure 3b that run parallel to the scan direction are attributed to tipinduced defects. A cross-sectional analysis of this image shown in Figure 4 reveals these strings to be of remarkably consistent height (ca. 1.2 nm) and thickness (ca. 80 nm).

The number of strings and their positions across the NaCl surface change with time. The image in Figure 3c was acquired 4 min after the image in Figure 3a at the exact same spot on the surface. Despite the obvious mobility of these strings, their average height and thickness are maintained. Notable in both images are strings that are very close together yet that do not lead to NaNO₃ crystallization.

Figure 2. Contact AFM images of (a) NaCl(100) surface prior to HNO₃ exposure; (b) subsequent exposure of surface in (a) to 4×10^{-7} mol/cm³ dry HNO₃; (c) 24 min after image in (b); (d) subsequent exposure of surface in (c) to an additional 6×10^{-7} mol/cm³ HNO₃ (total exposure of surface in (a) to 1×10^{-6} mol/cm³ HNO₃).

Figure 3. Contact AFM of NaCl(100) surface exposed to 1×10^{-6} mol/cm³ HNO₃ followed by exposure to 1×10^{-5} mol/cm³ H₂O. (a) 5 μ m × 5 μ m image of NaNO₃ strings on NaCl; (b) 1 μ m × 1 μ m zoom of boxed region in image (a); (c) 5 μ m × 5 μ m image of strings 4 min after image in (a); (d) 5 μ m × 5 μ m image after NaNO₃ crystallization.

NaNO₃ crystallization at this spot on the surface is evident in the image acquired ca. 8 min after this single H_2O exposure. Figure 3d shows one such crystal of ca. 30 nm in height that has apparently formed from the upper area in Figure 3c in which the strings have formed a completely closed pseudo-rectangular arrangement. Significantly, no strings are evident on the surface in the immediate area surrounding the crystal; however, subnanometer string "tracks" are observed on the NaCl at positions

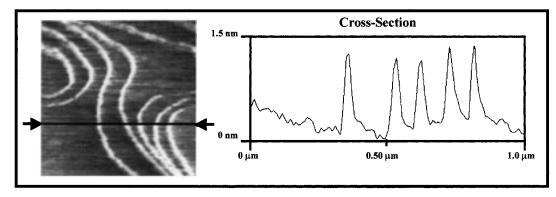


Figure 4. Cross-sectional analysis of NaNO3 strings across the NaCl(100) surface.

where the strings previously existed. At the end of this surface reaction induced by exposure to H_2O , the surface is covered by ca. 30 μ m rhombohedral NaNO₃ crystals larger than those shown in Figure 1c.

The origin of the strings observed after surface deliquescence is rationalized as follows. Exposure of the NaNO₃-capped surface to H₂O results in displacement of the metastable NaNO₃ layer with concomitant deliquescence of the underlying NaCl surface, the energetically most favorable process. (The energetics of this system are probably dictated by the lack of a commensurate lattice between NaNO3 and NaCl as ascertained by computer calculations using Epicalc.¹⁷) The formation of strings containing NaNO3 that are mobile is attributed to the presence of a H₂O adlayer on the NaCl surface and the lack of a strong interaction between NaNO₃ and the NaCl surface. The transient nature of these strings suggests a kinetic barrier associated with the crystallization of NaNO₃. If NaNO₃ crystallization occurs as a precipitation reaction from saturated aqueous solution, then this kinetic barrier could be the dissolution of these strings in the underlying H₂O adlayer.

In summary, contact AFM has been used to observe in situ the reaction of HNO₃ with NaCl. Exposures of NaCl(100) to large amounts of HNO₃ (4×10^{-5} mol/cm³) with subsequent exposure to H₂O results in a surface containing rhombohedral NaNO₃ crystals (ca. 23% of the surface area) with the remaining surface as unreacted NaCl. The newly exposed NaCl surface further reacts with HNO₃ to form additional NaNO₃. Images acquired after low HNO₃ exposure (4×10^{-7} mol/cm³) show NaNO₃ growth along NaCl step edges. The NaNO₃ layer continues to grow two-dimensionally until complete surface coverage is achieved. Subsequent H₂O exposure results in surface deliquescence and the formation of mobile strings containing NaNO₃. These strings are transient in nature with the formation of rhombohedral NaNO₃ crystals as the final surface state. Acknowledgment. The authors gratefully acknowledge support of this research by the National Science Foundation (CHE-9504345.) The authors thank Dr. Andrew Back for computational assistance and useful discussions on the NaNO₃/ NaCl interface.

References and Notes

(1) Vogt, R.; Finlayson-Pitts, B. J. J. Phys. Chem. 1994, 98, 3747.

(2) Timonen, R. S.;, Chu, L. T.; Leu, M.; Keyser, L. F. J. Phys. Chem. **1994**, *98*, 9509.

(3) Karlsson, R.; Ljungström, E. J. Aerosol. Sci. 1995, 26, 39.

(4) Leu, M.; Timonen, R. S.; Keyser, L. F.; Yung, Y. Y. J. Phys. Chem. 1995, 99, 13203.

(5) Caloz, F.; Fenter, F. F.; Rossi, M. J. J. Phys. Chem. 1996, 100, 7494.

(6) Peters, S. J.; Ewing, G. E. J. Phys. Chem, 1996, 100, 14093.

(7) Beichert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. 1996, 100, 15228.

(8) Laux, J. M.; Fister, T. F.; Finlayson-Pitts, B. J.; Hemminger, J. C. J. Phys. Chem. 1996, 100, 19891.

(9) Allen, H. C.; Laux, A. J. M.; Vogt, R.; Finlayson-Pitts, B. J.; Hemminger, J. C. J. Phys. Chem. **1996**, 100, 6371.

(10) Langer, S.; Pemberton, R. S.; Finlayson-Pitts, B. J. J. Phys. Chem. A **1997**, 101, 1277.

(11) Hitchcock, D. R.; Spiller, L. L.; Wilsson, W. E. Atmos. Environ. 1980, 14, 165.

(12) Keene, W. C.; Pszenny, A. A. P.; Jacob, D. J.; Duce, R. A.; Galloway, J. N.; Schultz-Tokos, J. J.; Sievering, H.; Boatman, J. F. *Global Biochem. Cycles* **1990**, *4*, 407.

(13) Shindo, H.; Ohashi, M.; Tateishi, O.; Seo, A. J. Chem. Soc., Faraday Trans. 1997, 93, 1169.

(14) Shindo, H.; Ohashi, M.; Baba, K.; Seo, A. Surf. Sci. 1996, 357-358, 111.

(15) Nakahara, S.; Langford, S. C.; Dickinson, J. T. Tribol. Lett. 1995, 1, 277.

(16) Peters, S. J.; Ewing, G. E. Langmuir 1997, 13, 6345.

(17) Last, J. A.; Hiller, A. C.; Hooks, D. E.; Maxson, J. B.; Ward, M. D. Chem. Mater. **1998**, 10, 422.