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ABSTRACT: Using a hydrogen-transfer-mediated activation mode, we report a new catalytic 

system for the transfer hydrogenation of naphthols. In the presence of Pd/C catalyst and base, various 

naphthols reacted with indolines to afford N-aryl-substituted heterocyclic compounds. Indolines were 

found to act as a novel hydrogen donors for naphthols under palladium catalysis. This method 

features good functional tolerance, operational simplicity, and a readily available catalyst.

INTRODUCTION

N-Arylheterocycles are important building blocks in medicinal, biological, and organic 

chemistry.1 N-Arylindoles are of interest as antipsychotic agents,2 melatonin receptor agonists, 

partial agonists,3 antipsychotic agents,4 and synthetic intermediates in the preparation of other 

biologically active heterocyclic agents.5 Indoles and naphthalenes are common substructures in 

natural products. The synthesis of these simple structures, or their introduction into complex 

molecules, would not only have significant potential biological applications, but also represent a 

significant contribution to synthetic methodology.6 In the last decades, much effort has been directed 
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toward improving C–N bond formation reactions to synthesis of N-arylated heterocycles.7 

Traditionally, Pd and Cu catalysts have been used for C–N bond formations. However, current aryl 

halide-based strategies require the pre-synthesis of aryl halides and generate unwanted halide waste.8 

Therefore, researchers should aim to develop more efficient and environmentally friendly 

cross-coupling methods to construct N-arylindoles.

Hydrogen transfer-mediated C–N bond formations have emerged as powerful tools in synthetic 

organic chemistry.7b, 9 The direct coupling of phenols, instead of haloarenes, has long been a 

synthetic aspiration and significant scientific challenge. Li’s group developed a highly efficient 

Pd/C-catalyzed formal direct cross-coupling of phenols with various amines and anilines using 

sodium formate as hydrogen donor (HD) under transfer hydrogenation conditions.10 More recently, 

Li and coworkers described a palladium-catalyzed formal aromaticity transfer coupling reaction 

between phenols and pyrrolidines or indolines to generate the corresponding N-cyclohexyl pyrroles 

or indoles using NaBH4 as hydrogen donor (Scheme 1a).11 Recently, Li’s group have reported a 

palladium-catalyzed formal direct cross-coupling of phenols with various amines and anilines 

through a tandem reduction/condensation/dehydrogenation process (Scheme 1b).12 As part of our 

continuing research interest in the construction of functional N-heterocycles through hydrogen 

transfer,13 we have recently reported an iridium-catalyzed hydrogen-transfer-mediated 

α-functionalization of 1,8-naphthyridines using tetrahydroquinolines (THQs) as inactive hydrogen 

donors 14. These previous studies prompted us to explore the transfer hydrogenation cross-coupling 

of THQ with 2-naphthols, in which THQ serves as both reagent and hydrogen donor (Scheme 1c). 

THQs does not react in this system because THQ is difficult to dehydrogenate relative to indoline in 
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this catalytic system, so it cannot transfer hydrogenation process. Interestingly, we observed that, 

using indoline instead of THQ under Pd/C catalysis and t-BuOK conditions, 2-naphthol was 

successfully N-arylated to give desired product 3aa in 26% (Scheme 1d). Compared with 

conventional HDs (such as alcohols,15 NH3BH3,16 Hantzsch esters,17 HCO2H,18 and NaCO2H10), 

indolines derivatives, which are readily available, and easy to handle, were novel hydrogen donors in 

hydrogen transfer reactions, providing a new and promising approach to future transfer 

hydrogenations.

Scheme 1. Unexpected new transfer hydrogenation system
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RESULTS AND DISCUSSION

Our initial studies focused on developing a more efficient catalyst system for the coupling of 

indoline 1a and 2-naphthol 2a as a model reaction. First, conventional bases were tested by 

performing the reaction in toluene at 130 C for 12 h under N2 protection. Many bases were tested, 

including t-BuOK, t-BuONa, HCO2Na, NaOH, and NaOCH3 (Table 1, entries 1–5). The results 
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showed that NaOCH3 was the most effective base, affording product 3aa in 49% yield. However, 

using CF3CO2H or no base failed to afford any desired product (entries 6 and 7). A control 

experiment without catalyst afforded no product, confirming that the catalyst was essential to the 

reaction (Table 1, entry 8). When various palladium catalysts were tested, Pd/C gave the best results 

(Table 1, entries 9–11). Next, several solvents were examined in combination with NaOCH3 (entries 

12–15), with p-xylene giving the best result (59% yield, entry 13). The best yield of 3aa (68%) was 

obtained when the reaction was conducted in p-xylene at 130 C for 24 h. Finally, by changing the 

reaction temperature to 140 C, the yield was increased to 76% yield (entry 17). When we reduce the 

content of Pd/C catalyst, we find that the yield of Pd/C catalyst (10 wt%, 10 mol% based on Pd 

content) is greatly reduced. Therefore, the conditions shown in entry 17 (Table 1) were selected as 

optimal conditions.

Table 1. Screening of optimal reaction conditionsa

1a 2a 3aa

N
H

OH
Cat.

additive, solvent
N+

Entry Cat. (10 mol %)
Additive

(50 mol %)
Solvent 3aa (yield %)b

1 Pd/C t-BuOK Toluene 31

2 Pd/C t-BuONa Toluene 34

3 Pd/C HCO2Na Toluene 44
4 Pd/C NaOH Toluene 22
5 Pd/C NaOCH3 Toluene 49
6 Pd/C TFA Toluene Trace
7 Pd/C - Toluene Trace
8 - NaOCH3 Toluene -
9 PdCl2 NaOCH3 Toluene -
10 Pd(PPh3)4 NaOCH3 Toluene -
11 Pd(dba)2 NaOCH3 Toluene 14
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12 Pd/C NaOCH3 Dioxane 40
13 Pd/C NaOCH3 p-xylene 59
14 Pd/C NaOCH3 DMSO Trace
15 Pd/C NaOCH3 DMF Trace
16 Pd/C NaOCH3 p-xylene 68c

17 Pd/C NaOCH3 p-xylene (76, 74, 71)d

18 Pd/C NaOCH3 p-xylene (62, 41)e

aReaction conditions: Unless otherwise stated, all reactions were performed with 1a (42.8 mg, 0.36 mmol), 2a (43.2 
mg, 0.3 mmol), catalyst (31.8mg, 10 mol%), and base (8.1mg, 50 mol%) in solvent (1.5 mL) at 130 C by oil-bath 
heating for 16 h under N2 protection. bIsolated yield. cAfter reacting for 24 h. dYields obtained at temperatures at 
140, 150, and 160 C, respectively. e Pd/C (6 mol%, 2 mol %).

With optimized conditions in hand, the indoline substrate scope was explored. As shown in 

Scheme 2, different indolines reacted efficiently with 2-naphthol 2a, furnishing desired products 

3aa–3oa in moderate to good isolated yields. Various indolines bearing electron-withdrawing and 

electron-donating groups all reacted smoothly. Furthermore, substituent positioning at the meta- or 

para-positions of the benzene ring only slightly affected the product yields (Scheme 2, 3ca and 3da). 

Obvious electronic effects were observed in the reactions of substituted indolines, with 

electron-donating groups resulting in relatively high yields (3ca–3ga) and electron-withdrawing 

groups (3ha-3la) resulting in relatively low yields. This phenomenon was attributed to the 

electron-donating substituents enhancing the nucleophilicity of the corresponding indoles, which 

favored the trapping of cyclohexenone intermediates (Scheme 2). Similarly, disubstituted indolines 

(1m–1o) underwent effective coupling to give desired products 3ma–3oa. We tested some 

pyrrolidines and found that no target products were obtained. It may be that pyrrolidines are more 

difficult to dehydrogenate relative to indoline in this catalytic system. According to the literature,19 

we have tried to test the coupling reaction of indoles and naphthol under this conditions using 
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HCO2H/HCO2K as hydrogen source, but failed to give product, probably because the N atom on the 

indole is weakly nucleophilic.

Scheme 2. Substrate scope of indolines a
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a Standard conditions: 1a (0.36 mmol), 2 (0.3 mmol), Pd/C (10 mol %), and base (50 mol %) in 

p-xylene (1.5 mL) at 140 C for 24 h. 

Scheme 3. Variation of both coupling partners 
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Next, we focused on varying both coupling partners (Scheme 3). Reactions of indolines 1 with 

various naphthols 2 were explored. Similar to the results described in Scheme 3, all reactions 

proceeded efficiently to afford the desired products in moderate to good isolated yields (3ab–3di). 

Various naphthols bearing electron-withdrawing or electron-donating groups were all suitable 

substrates in this transformation, with the corresponding products obtained in moderate to good 

yields. Furthermore, naphthols bearing electron-donating substituents provided the desired products 

in higher yields than those bearing electron-withdrawing substituents (3ab–3gc). When 

2,6-naphthalenediol and 2,7-dihydroxynaphthalene were used as starting materials, only one C–N 

bond was formed (3ae, 3af). Interestingly, 2-hydroxyanthracene reacted smoothly with indoline to 

afford desired N-arylation product 3ag. However, the reaction of phenol 2h with indoline 1a afforded 

only a low yield (3ah, 18%), it is possible that phenol is more difficult to hydrogenate than naphthol 

in this catalytic system using indoline as hydrogen donor. Interestingly, the catalytic system was also 
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compatible with the transformation of 6-hydroxyquinoline, affording the new indole-quinoline linked 

biheteroarenes (3ai, 3di). When using 1-naphthol as a substrate, unfortunately no target product (3aj) 

was obtained.

Scheme 4. Control experiments
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To gain insight into the reaction mechanism, several control experiments were performed 

(Scheme 4). The model reaction was interrupted after 3 h to analyze the intermediates. Product 3aa, 

indole 1a’, 3aa’, and 1,2,3,4-tetrahydro-2-naphthalenol 2a’ were detected in 51%, 11%, 12%, and 

4% yields, respectively (Scheme 4, Eq. 1). The reaction of 2a’ with indoline 1a under the standard 

conditions failed to give product 3aa (Eq. 2), supporting that suppressing the formation of 

over-hydrogenated tetrahydronaphthalenol 2a’ was the key factor in chemoselective generation of 

product 3aa. The reaction of 1a reacting with β-tetralone gave products 3aa and 3aa” in 41% and 
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36% yields, respectively (Eq. 3). When we tried to separate 3aa’’, we found that 3aa’’ rapidly 

converts to the other intermediate. Further control experiments suggested that both cyclohexanone 

and cyclohexenone might be reaction intermediates (Eq. 4). Furthermore, reacting 3aa’ under the 

standard reaction conditions gave product 3aa in 94% yield (Eq. 5), indicating that 3aa’ was a key 

reaction intermediate. The deuterium-labelling experiment of indoline 1a-dn with 2a resulted in 

product 3aa-dn, with incorporation of deuterium on the naphthalene unit, suggesting that hydrogen 

was transferred from indoline 1a to 2-naphthol 2a (Eq. 6). The naphthol 2a is initially activated by 

hydrogen transfer of [DPd(II)D] arising from the metal catalyst, affording cyclohexen-1-ol 

intermediate and its tautomer cyclohexen-2-ol (in this tautomeric process, the D ratio was different 

on the naphthol ring).

Based on the above results, a tentative mechanism for this hydrogen transfer reaction was 

proposed, as shown in Scheme 5. Initially, the Pd-catalyzed dehydrogenation of indoline 1a (1.5 eq.) 

forms an active HPdIIH species, which performs the first hydrogenation of the 2-naphthol ring to 

form activated intermediate 2a-A and regenerated the active palladium catalyst. Under NaOMe 

conditions, intermediate 2a-A undergoes fast condensation with indoline 1a to give key intermediate 

3aa-B. The role of NaOMe is to promote the conversion of naphthol to cyclohexenone intermediate 

under this condition. Next, desired product 3aa can be obtained by palladium-catalyzed 

dehydrogenation of intermediate 3aa-B to regenerate the HPdIIH species.

Scheme 5. Plausible reaction pathways
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CONCLUSIONS 

In summary, a hydrogen-transfer-mediated activation mode for non-activated naphthols has been 

developed to achieve the simple, efficient, and novel N-arylation of naphthols using indolines as both 

reagent and hydrogen donor. The developed chemistry features operational simplicity, a readily 

available catalyst, good functional tolerance, and a wide substrate scope. This method offers a 

significant basis for the further development of new protocols for directly transforming or 

functionalizing inert N-arylated indoles. In addition, the reaction employed indoline as the hydrogen 

donor, avoiding the use of a potentially hazardous pressurized H2 atmosphere. Indoline is a novel 

hydrogen donor in hydrogen transfer reactions, providing a promising new approach to future 

transfer hydrogenations.

EXPERIMENTAL SECTION

General Information. All experiments were carried out under the standard conditions. Flash column 

chromatography was performed over silica gel (200−300 mesh). All the obtained products were 

characterized by melting points (m.p), 1H NMR and 13C {1H} NMR spectra were recorded on a 

Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to TMS, chloroform 

and DMSO signals. MS analyses were performed on an Agilent 5975 GC−MS instrument (EI). High 

resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) and 
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time-of-flight (TOF) mass analysis. Melting points were uncorrected. The new compounds were 

characterized by 1H NMR, 13C {1H} NMR, MS and HRMS. Unless otherwise stated, all the reagents 

were purchased from commercial sources (J&KChemic, TCI, Fluka, Acros, SCRC), used without 

further purification.

Typical procedure for the synthesis of 3. In a 25 mL Schlenk tube was combined Indolines 1 

(0.36 mmol), Naphthols 2 (0.30 mmol), Pd/C (10 wt%, 10 mol% based on Pd content) and NaOCH3 

(50 mol%) in P-xylene (1.5 mL). The mixture was then stirred at 140 °C under oil-bath heating for 

24 h. After cooling down to room temperature, the reaction mixture was concentrated by removing 

the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with 

petroleum ether (60-90 °C): ethyl acetate (50:1) to give 3.

Synthesis of 1-(naphthalen-2-yl)-1H-indole (3aa): Under N2 atmosphere, Indoline 1a (0.4 g, 3.6 

mmol), 2-Naphthol 2a (0.4 g, 3 mmol), Pd/C (318 mg, 10 wt%, 10 mol% based on Pd content) and 

NaOCH3 (81 mg, 50 mol%) in P-xylene (5.0 mL) were introduced into a Schlenk tube (50 mL), 

successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at 140 °C for 

24 h. Purification of the residue by column chromatography (50:1 petroleum ether: ethyl acetate) 

gave 3aa as a yellow solid (0.5 g, 68% yield). Yellow solid; m.p: 90.9-92.7 °C; Rf = 0.3 (petroleum 

ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.7 Hz, 1H), 8.01 – 7.88 

(m, 3H), 7.80 (d, J = 6.7 Hz, 1H), 7.76 – 7.67 (m, 2H), 7.66 – 7.54 (m, 2H), 7.50 (d, J = 3.1 Hz, 1H), 

7.39 – 7.26 (m, 2H), 6.81 (d, J = 3.2 Hz, 1H). 13C {1H} NMR (101 MHz, CDCl3) δ 137.4, 136.2, 

133.9, 131.9, 129.7, 129.5, 128.23, 127.9, 127.8, 127.0, 126.1, 123.3, 122.6, 122.0, 121.3, 120.6, 

110.7, 103.9. HRMS (ESI) m/z calcd for C18H14N [M+H]+ : 244.1121; found 244.1113.

2-methyl-1-(naphthalen-2-yl)-1H-indole (3ba). Yellow oil (54.7 mg, 56% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.6 Hz, 1H), 

7.98 (dd, J = 6.0, 3.5 Hz, 1H), 7.91 (dd, J = 6.0, 3.5 Hz, 1H), 7.87 (d, J = 1.7 Hz, 1H), 7.67 – 7.62 (m, 

1H), 7.60 (dd, J = 6.2, 3.3 Hz, 2H), 7.48 (dd, J = 8.6, 2.0 Hz, 1H), 7.21 – 7.10 (m, 3H), 6.49 (s, 1H), 

2.38 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 138.4, 137.3, 135.5, 133.7, 132.6, 129.4, 128.4, 

128.0, 127.9, 126.8, 126.6, 126.4, 126.2, 121.2, 120.2, 119.7, 110.1, 101.5, 13.5. HRMS (ESI) m/z 

calcd for C19H16N [M+H]+ : 258.1277; found 258.1271.
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5-methyl-1-(naphthalen-2-yl)-1H-indole (3ca). Yellow solid (59.4 mg, 77% yield); m.p: 

164.9-167.3 °C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 

7.90 (d, J = 8.7 Hz, 1H), 7.88 – 7.77 (m, 3H), 7.60 (dd, J = 8.7, 1.9 Hz, 1H), 7.57 – 7.43 (m, 4H), 

7.35 (d, J = 3.1 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H), 6.62 (d, J = 2.3 Hz, 1H), 2.46 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 137.6, 134.5, 134.0, 133.9, 131.8, 129.9, 129.6, 128.2, 127.9, 127.8, 

126.9, 126.0, 124.2, 123.2, 121.6, 120.9, 110.4, 103.5, 21.5. HRMS (ESI) m/z calcd for C19H16N 

[M+H]+ : 258.1277; found 258.1271.

6-methyl-1-(naphthalen-2-yl)-1H-indole (3da). Yellow oil (57.8 mg, 75% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.7 Hz, 1H), 

7.99 – 7.89 (m, 3H), 7.68 (dd, J = 15.9, 8.3 Hz, 2H), 7.62 – 7.53 (m, 2H), 7.49 (s, 1H), 7.41 (d, J = 

3.1 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 2.52 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 

137.5, 136.6, 133.9, 132.4, 131.9, 129.6, 127.9, 127.8, 127.7, 127.3, 126.9, 126.1, 123.5, 122.3, 

122.0, 120.9, 110.5, 103.7, 22.0. HRMS (ESI) m/z calcd for C19H16N [M+H]+ : 258.1277; found 

258.1271.

5-methoxy-1-(naphthalen-2-yl)-1H-indole (3ea). Yellow oil (63.9mg, 78% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 8.7 Hz, 1H), 

7.96 – 7.86 (m, 3H), 7.67 (dd, J = 8.7, 2.1 Hz, 1H), 7.62 – 7.52 (m, 3H), 7.45 (d, J = 3.1 Hz, 1H), 

7.23 (s, 1H), 6.97 (d, J = 8.9 Hz, 1H), 6.70 (d, J = 3.0 Hz, 1H), 3.93 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 154.8, 137.5, 133.9, 131.8, 131.4, 130.1, 129.6, 128.6, 127.9, 127.7, 127.0, 126.0, 123.1, 

121.5, 112.6, 111.5, 103.6, 102.9, 55.9. HRMS (ESI) m/z calcd for C19H16NO [M+H]+ : 274.1226; 

found 274.1219.

4-(benzyloxy)-1-(naphthalen-2-yl)-1H-indole (3fa). Yellow oil (73.3 mg, 70% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.86 – 7.68 (m, 4H), 7.50 

(d, J = 8.7 Hz, 1H), 7.46 – 7.35 (m, 4H), 7.28 (t, J = 7.4 Hz, 2H), 7.21 (d, J = 2.7 Hz, 2H), 7.14 (d, J 

= 8.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.6 Hz, 1H), 6.80 (s, 1H), 6.54 (d, J = 7.7 Hz, 1H), 5.13 (s, 2H). 

13C{1H} NMR (101 MHz, CDCl3) δ 152.8, 137.7, 137.5, 133.9, 131.9, 129.6, 128.6, 127.9, 127.9, 

127.8, 127.4, 127.0, 126.8, 126.2, 123.4, 123.4, 122.0, 120.5, 104.4, 102.0, 101.5, 70.1. HRMS (ESI) 

m/z calcd for C25H20NO [M+H]+ : 350.1539; found 350.1531.
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5-(benzyloxy)-1-(naphthalen-2-yl)-1H-indole (3ga). Red solid (78.5 mg, 75% yield); m.p: 

115.2-117.3 °C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 

8.00 (d, J = 8.7 Hz, 1H), 7.98 – 7.86 (m, 3H), 7.68 (dd, J = 8.7, 2.1 Hz, 1H), 7.65 – 7.54 (m, 5H), 

7.51 – 7.43 (m, 3H), 7.40 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 2.0 Hz, 1H), 7.08 (dd, J = 8.9, 2.1 Hz, 1H), 

6.72 (d, J = 3.1 Hz, 1H), 5.21 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 153.9, 137.8, 137.5, 134.0, 

131.8, 131.6, 130.1, 129.7, 128.7, 128.6, 127.9, 127.9, 127.8, 127.6, 127.0, 126.1, 123.1, 121.5, 

113.4, 111.5, 104.6, 103.7, 70.9. HRMS (ESI) m/z calcd for C25H20NO [M+H]+ : 350.1539; found 

350.1528.

5-fluoro-1-(naphthalen-2-yl)-1H-indole (3ha). Yellow oil (46.9 mg, 60% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 8.7 Hz, 1H), 

7.82 (dd, J = 15.9, 8.5 Hz, 3H), 7.61 – 7.42 (m, 4H), 7.34 (dd, J = 3.1, 1.3 Hz, 1H), 7.28 (d, J = 7.6 

Hz, 1H), 6.94 (dd, J = 8.4, 7.0 Hz, 1H), 6.65 (d, J = 2.6 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 

160.4 (d, J = 237.9 Hz), 137.0, 136.2 (d, J = 12.0 Hz), 133.9, 132.0, 129.9, 128.7 (d, J = 3.5 Hz), 

127.9, 127.8, 127.1, 126.3, 125.9, 122.9, 122.0, 121.9, 109.3 (d, J = 24.5 Hz), 103.9, 97.2 (d, J = 

27.1 Hz). 19F NMR (376 MHz, CDCl3) δ -119.8. HRMS (ESI) m/z calcd for C18H13FN [M+H]+ : 

262.1027; found 262.1021.

4-fluoro-1-(naphthalen-2-yl)-1H-indole (3ia). Yellow oil (47.7 mg, 61% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.7 Hz, 1H), 

7.99 – 7.86 (m, 3H), 7.65 (dd, J = 8.7, 2.1 Hz, 1H), 7.63 – 7.53 (m, 2H), 7.50 – 7.37 (m, 2H), 7.18 

(dd, J = 13.4, 7.8 Hz, 1H), 6.91 (t, J = 7.9 Hz, 1H), 6.86 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 

156.5 (d, J = 247.4 Hz), 138.7 (d, J = 11.0 Hz), 137.0, 133.8, 132.1, 129.7, 128.2, 127.9, 127.8, 

127.1, 126.4, 123.2, 123.0 (d, J = 7.7 Hz), 122.3, 118.5 (d, J = 23.0 Hz), 106.8 (d, J = 3.4 Hz), 105.3 

(d, J = 18.9 Hz), 99.8. 19F NMR (376 MHz, CDCl3) δ -121.7. HRMS (ESI) m/z calcd for C18H13FN 

[M+H]+ : 262.1027; found 262.1038.

Methyl 1-(naphthalen-2-yl)-1H-indole-6-carboxylate (3ja). Yellow solid (46.1 mg, 51% yield); 

m.p: 150-151 °C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 

8.37 (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.99 – 7.87 (m, 4H), 7.77 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.6 

Hz, 1H), 7.64 – 7.54 (m, 3H), 6.80 (d, J = 3.1 Hz, 1H), 3.94 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) 
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δ 168.0, 136.6, 135.7, 133.8, 132.9, 132.2, 131.4, 129.9, 127.9, 127.9, 127.1, 126.4, 124.3, 123.3, 

122.5, 121.6, 120.8, 112.9, 103.9, 51.9. HRMS (ESI) m/z calcd for C20H16NO2 [M+H]+ : 302.1176; 

found 302.1171.

Methyl 1-(naphthalen-2-yl)-1H-indole-4-carboxylate (3ka). Yellow oil (47.9 mg, 53% yield); Rf = 

0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.10 – 7.98 (m, 2H), 

7.97 – 7.88 (m, 3H), 7.82 (d, J = 8.2 Hz, 1H), 7.65 – 7.54 (m, 4H), 7.45 (d, J = 3.0 Hz, 1H), 7.31 (t, J 

= 8.0 Hz, 1H), 4.07 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 167.9, 137.0, 136.8, 133.8, 132.1, 

130.3, 129.8, 128.9, 127.9, 127.8, 127.1, 126.4, 124.0, 123.4, 122.6, 122.1, 121.7, 115.4, 104.9, 51.9. 

HRMS (ESI) m/z calcd for C20H16NO2 [M+H]+ : 302.1176; found 302.1188.

1-(naphthalen-2-yl)-1H-indole-5-carbonitrile (3la). Yellow solid (43.4 mg, 54% yield); m.p: 

133.6-137.5 °C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 

8.06 – 7.96 (m, 2H), 7.94 – 7.89 (m, 1H), 7.86 (d, J = 5.7 Hz, 2H), 7.60 – 7.52 (m, 4H), 7.50 (d, J = 

3.3 Hz, 1H), 7.41 (dd, J = 8.6, 1.2 Hz, 1H), 6.76 (d, J = 3.3 Hz, 1H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 137.7, 136.1, 133.7, 132.3, 130.6, 130.0, 129.1, 128.0, 127.9, 127.4, 126.7, 126.7, 125.4, 

123.0, 122.7, 120.6, 111.5, 104.4, 103.6. HRMS (ESI) m/z calcd for C19H13N2 [M+H]+ : 269.1073; 

found 269.1066.

2,3-dimethyl-1-(naphthalen-2-yl)-1H-indole (3ma). Yellow solid (48.0 mg, 59% yield); m.p: 

87-89.1°C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.07 – 

7.98 (m, 2H), 7.94 (dd, J = 6.0, 3.4 Hz, 1H), 7.89 (s, 1H), 7.71 – 7.59 (m, 3H), 7.51 (dd, J = 8.6, 1.5 

Hz, 1H), 7.28 – 7.10 (m, 3H), 2.44 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 137.6, 

135.9, 133.8, 133.1, 132.4, 132.4, 129.3, 129.0, 127.9, 127.9, 126.8, 126.5, 126.3, 121.3, 119.7, 

118.0, 109.8, 108.3, 11.1, 8.9. HRMS (ESI) m/z calcd for C20H18N [M+H]+ : 272.1434; found 

272.1426.

5-fluoro-2-methyl-1-(naphthalen-2-yl)-1H-indole (3na). Yellow oil (36.3 mg, 44% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.6 Hz, 1H), 

7.93 – 7.88 (m, 1H), 7.86 – 7.81 (m, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.37 (dd, J = 

8.6, 2.0 Hz, 1H), 7.22 (dd, J = 9.5, 2.4 Hz, 1H), 6.98 (dd, J = 8.9, 4.4 Hz, 1H), 6.79 (td, J = 9.1, 2.5 

Hz, 1H), 6.38 (s, 1H), 2.30 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 158.4 (d, J = 234.3 Hz), 139.1, 
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135.3, 135.1, 133.7, 132.6, 129.6, 128.7 (d, J = 10.2 Hz), 127.9 (d, J = 4.2 Hz), 126.9, 126.8, 126.4, 

125.9, 110.7 (d, J = 9.6 Hz), 109.3, 109.1, 104.6 (d, J = 23.6 Hz), 101.6 (d, J = 4.2 Hz), 13.59 . 19F 

NMR (376 MHz, CDCl3) δ -124.6. HRMS (ESI) m/z calcd for C19H15NF [M+H]+ : 276.1183; found 

276.1188.

2,5-dimethyl-1-(naphthalen-2-yl)-1H-indole (3oa). Yellow solid (40.6 mg, 50% yield); m.p: 

99.7-100.3 °C; Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 

7.95 (d, J = 8.6 Hz, 1H), 7.92 (dd, J = 6.0, 3.4 Hz, 1H), 7.85 (dd, J = 6.1, 3.3 Hz, 1H), 7.80 (d, J = 

1.3 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.42 (dd, J = 8.6, 2.0 Hz, 1H), 7.37 (s, 1H), 7.02 (d, J = 8.3 Hz, 

1H), 6.90 (d, J = 8.2 Hz, 1H), 6.35 (s, 1H), 2.44 (s, 3H), 2.31 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 137.3, 136.8, 135.7, 133.7, 132.5, 129.4, 129.3, 128.6, 127.9, 127.9, 126.8, 126.5, 126.3, 

126.1, 122.7, 119.5, 109.8, 101.2, 21.5, 13.5. HRMS (ESI) m/z calcd for C20H18N [M+H]+ : 

272.1434; found 272.1426.

1-(6-methoxynaphthalen-2-yl)-1H-indole (3ab). White oil (55.7 mg, 68% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.97 – 7.90 (m, 2H), 7.83 

(d, J = 8.9 Hz, 2H), 7.75 – 7.64 (m, 2H), 7.49 (d, J = 2.7 Hz, 1H), 7.39 – 7.26 (m, 4H), 6.82 (d, J = 

0.7 Hz, 1H), 4.02 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 158.0, 136.3, 135.5, 133.2, 129.4, 

129.3, 129.2, 128.3, 128.3, 123.9, 122.4, 122.2, 121.3, 120.4, 119.9, 110.6, 105.9, 103.6, 55.4. 

HRMS (ESI) m/z calcd for C19H16NO [M+H]+ : 274.1226; found 274.1219.

1-(6-methoxynaphthalen-2-yl)-5-methyl-1H-indole (3cb). Yellow oil (60.3 mg, 70% yield); Rf = 

0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.75 – 7.68 (m, 2H), 

7.63 (d, J = 8.9 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.38 (s, 2H), 7.25 (d, J = 2.9 Hz, 1H), 7.15 – 7.03 

(m, 2H), 6.94 (d, J = 8.5 Hz, 1H), 6.52 (s, 1H), 3.82 (s, 3H), 2.37 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 157.9, 135.7, 134.6, 133.0, 129.7, 129.7, 129.3, 129.2, 128.3, 128.2, 123.9, 123.8, 121.9, 

120.8, 119.8, 110.3, 105.9, 103.1, 55.4, 21.4. HRMS (ESI) m/z calcd for C20H18NO [M+H]+ : 

288.1383; found 288.1376.

Methyl 6-(1H-indol-1-yl)-2-naphthoate (3ac). Yellow solid (41.6 mg, 46% yield); m.p: 75-77.8 °C; 

Rf = 0.3 (petroleum ether/ethyl acetate = 50/1, v/v);  1H NMR (400 MHz, CDCl3) δ 8.66 (s, 1H), 

8.15 – 8.06 (m, 2H), 7.95 (d, J = 1.2 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.67 (d, 
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J = 8.1 Hz, 1H), 7.44 (d, J = 3.3 Hz, 1H), 7.30 – 7.17 (m, 2H), 6.75 (d, J = 3.2 Hz, 1H), 4.00 (s, 3H). 

13C{1H} NMR (101 MHz, CDCl3) δ 167.1, 139.4, 136.1, 135.8, 131.1, 130.9, 130.7, 129.7, 127.9, 

127.8, 127.5, 126.4, 123.8, 122.8, 121.4, 121.2, 120.8, 110.6, 104.6, 52.3. HRMS (ESI) m/z calcd for 

C20H16NO2 [M+H]+ : 302.1176; found 302.1172.

Methyl 6-(5-methoxy-1H-indol-1-yl)-2-naphthoate (3gc). White oil (54.9 mg, 45% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 8.16 (dd, J = 

8.6, 1.4 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.99 – 7.90 (m, 2H), 7.74 (dd, J = 8.7, 2.1 Hz, 1H), 7.62 (d, 

J = 9.0 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.44 (dd, J = 11.9, 5.3 Hz, 3H), 7.37 (d, J = 7.3 Hz, 1H), 

7.28 (d, J = 2.7 Hz, 1H), 7.04 (dd, J = 8.9, 2.3 Hz, 1H), 6.69 (d, J = 3.2 Hz, 1H), 5.18 (s, 2H), 4.04 (s, 

3H). 13C{1H} NMR (101 MHz, CDCl3) δ 167.1, 154.1, 139.5, 137.6, 136.2, 131.2, 131.1, 130.9, 

130.6, 130.3, 128.6, 128.3, 127.9, 127.8, 127.5, 127.4, 126.4, 123.5, 120.7, 113.5, 111.4, 104.7, 

104.4, 70.8, 52.3. HRMS (ESI) m/z calcd for C27H22NO3 [M+H]+ : 408.1594; found 408.1599.

1-(6-fluoronaphthalen-2-yl)-1H-indole (3ad). Yellow oil(42.3 mg, 54% yield); Rf = 0.3 

(petroleum ether/ethyl acetate = 20/1, v/v); 1H NMR (500 MHz, CDCl3) δ 7.96 (dd, J = 5.3, 3.3 Hz, 

2H), 7.90 (dd, J = 9.0, 5.5 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.73 (dd, J = 8.8, 1.8 Hz, 1H), 7.67 (d, J 

= 7.5 Hz, 1H), 7.58 (dd, J = 9.6, 2.5 Hz, 1H), 7.47 (d, J = 3.2 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.35 – 

7.23 (m, 2H), 6.79 (dd, J = 3.2, 0.6 Hz, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ 160.8 (d, J = 246.5 

Hz), 136.8 (d, J = 2.7 Hz), 136.0, 132.5 (d, J = 9.2 Hz), 130.8, 130.1 (d, J = 8.8 Hz), 129.4, 128.9 (d, 

J = 5.4 Hz), 128.1, 124.4, 122.6, 122.0, 121.3, 120.6, 117.5 (d, J = 25.6 Hz), 111.1 (d, J = 20.9 Hz), 

110.5, 103.9. 19F NMR (471 MHz, CDCl3) δ -114.2. HRMS (ESI) m/z calcd for C18H13FN [M+H]+ : 

262.1027; found 262.1021.

6-(1H-indol-1-yl)naphthalen-2-ol (3ae). Yellow oil (38.8 mg, 50% yield); Rf = 0.3 (petroleum 

ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.72 (s, 1H), 7.68 – 7.59 (m, 3H), 7.47 

(t, J = 8.1 Hz, 2H), 7.29 (d, J = 2.9 Hz, 1H), 7.17 – 6.99 (m, 4H), 6.61 (d, J = 2.9 Hz, 1H), 5.49 (s, 

1H). 13C{1H} NMR (101 MHz, CDCl3) δ 153.8, 136.3, 135.4, 133.2, 129.7, 129.3, 129.1, 128.3, 127.9, 

124.1, 122.4, 122.3, 121.2, 120.4, 118.9, 110.6, 109.7, 103.5. HRMS (ESI) m/z calcd for C18H14NO 

[M+H]+ : 260.1070; found 260.1064.
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7-(1H-indol-1-yl)naphthalen-2-ol (3af). Yellow solid (31.9 mg, 41% yield); m.p: 90-91.4°C; Rf = 

0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.7 Hz, 

1H), 7.83 (d, J = 9.4 Hz, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 7.9 Hz, 1H), 7.53 (dd, J = 8.6, 2.0 

Hz, 1H), 7.46 (d, J = 3.2 Hz, 1H), 7.33 – 7.22 (m, 2H), 7.20 – 7.14 (m, 2H), 6.77 (d, J = 2.9 Hz, 1H), 

5.75 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 154.5, 138.0, 136.1, 135.2, 129.8, 129.5, 129.4, 

128.2, 127.3, 122.5, 121.25, 120.9, 120.5, 120.4, 118.1, 110.7, 109.4, 103.8. HRMS (ESI) m/z calcd 

for C18H14NO [M+H]+ : 260.1070; found 260.1064.

1-(anthracen-2-yl)-1H-indole (3ag). Yellow solid (29.9 mg, 34% yield); m.p: 186.6-189.9 °C; Rf 

= 0.3 (petroleum ether/ethyl acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 8.44 (d, J = 18.3 Hz, 

2H), 8.11 (d, J = 9.0 Hz, 1H), 8.06 – 7.93 (m, 3H), 7.71 (dd, J = 13.4, 7.9 Hz, 2H), 7.64 (dd, J = 9.0, 

1.9 Hz, 1H), 7.53 – 7.42 (m, 3H), 7.29 – 7.16 (m, 2H), 6.74 (d, J = 3.2 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3) δ 136.7, 136.1, 132.4, 131.8, 131.8, 131.7, 130.1, 130.1, 129.5, 128.3, 128.1, 128.0, 

126.5, 126.1, 126.0, 125.6, 123.4, 122.6, 121.3, 120.6, 110.8, 104.0. HRMS (ESI) m/z calcd for 

C22H16N [M+H]+ : 294.1277; found 294.1270.

1-phenyl-1H-indole (3ah). Yellow oil (10.4 mg, 18% yield); Rf = 0.3 (petroleum ether/ethyl 

acetate = 50/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 

7.56 (d, J = 4.2 Hz, 4H), 7.44 – 7.38 (m, 2H), 7.31 – 7.19 (m, 2H), 6.74 (d, J = 3.2 Hz, 1H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 139.9, 135.9, 129.6, 129.4, 127.9, 126.5, 124.4, 122.4, 121.2, 120.4, 

110.5, 103.6. HRMS (ESI) m/z calcd for C14H12N [M+H]+ : 194.0964; found 194.0981.

6-(1H-indol-1-yl)quinolone (3ai). Yellow oil (38.8 mg, 53% yield); Rf = 0.3 (petroleum 

ether/ethyl acetate = 10/1, v/v); 1H NMR (500 MHz, CDCl3) δ 8.97 (d, J = 4.1 Hz, 1H), 8.29 (d, J = 

8.9 Hz, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.94 – 7.86 (m, 2H), 7.77 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 8.1 

Hz, 1H), 7.50 – 7.43 (m, 2H), 7.33 – 7.23 (m, 2H), 6.79 (d, J = 3.2 Hz, 1H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 150.5, 146.6, 137.8, 135.9, 135.8, 131.2, 129.6, 128.8, 127.9, 126.6, 122.8, 122.0, 121.4, 

121.2, 120.8, 110.5, 104.5. HRMS (ESI) m/z calcd for C17H13N2 [M+H]+ : 245.1073; found 

245.1088.

6-(6-methyl-1H-indol-1-yl)quinoline (3di). Yellow oil (43.3 mg, 53% yield); Rf = 0.3 (petroleum 

ether/ethyl acetate = 10/1, v/v); 1H NMR (500 MHz, CDCl3) δ 8.98 (d, J = 3.0 Hz, 1H), 8.31 (d, J = 
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8.9 Hz, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.95 (dd, J = 8.9, 2.2 Hz, 1H), 7.92 (s, 1H), 7.63 (d, J = 8.0 Hz, 

1H), 7.52 (dd, J = 8.2, 4.1 Hz, 1H), 7.47 (d, J = 0.6 Hz, 1H), 7.40 (d, J = 3.3 Hz, 1H), 7.08 (dd, J = 

8.0, 0.9 Hz, 1H), 6.73 (dd, J = 3.3, 0.7 Hz, 1H), 2.50 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 

150.2, 146.3, 138.1, 136.3, 136.1, 132.7, 130.9, 128.9, 127.4, 127.3, 126.9, 122.6, 121.9, 121.3, 

120.9, 110.3, 104.3, 21.9. HRMS (ESI) m/z calcd for C18H15N2 [M+H]+ : 259.1230; found 259.1213.
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