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Abstract: The direct small peptide-catalyzed enan-
tioselective Michael addition of ketones to nitroole-
fins is presented. Simple di- and tripeptides derived
from alanine catalyze the asymmetric Michael addi-
tions with high stereoselectivity and furnish the cor-
responding Michael products in high yield with up
to 68:1 dr and 98% ee. The study demonstrates
that small, readily prepared peptides with increased
structural complexity as compared to the parent ami-
no acid mediate the asymmetric Michael reaction
with superior reactivity and enantioselectivity.
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The Michael addition is a fundamental carbon-carbon
bond-forming reaction in organic synthesis.!"! Therefore,
chemists have developed several catalytic asymmetric
protocols for this important reaction.”! In recent years,
an intense research effort has been made to find non-
toxic chiral organic molecules as catalysts for enantiose-
lective reactions.”! For example, Miller!* and Jacobsen!”
have employed catalytic peptides and peptide-like mol-
ecules as catalysts for asymmetric additions. Their struc-
tural diversity, availability and modularity could make
them ideal asymmetric organocatalysts for a variety of
transformations.' Proline!”! and N-terminal prolylpep-
tides® have been described as catalysts for the asymmet-
ric Michael reaction. However, only moderate enantio-
selectivity is typically obtained. For example, proline
and N-terminal prolyldipeptides catalyze the asymmet-
ric formation of y-nitroketones with 5-76% ee and 0-
31% ee, respectively. Proline-derived derivatives have
been proven to be more succesful for the asymmetric
Michael reaction.”~'? Recently, Alexakis,"*! Kotsuki,'*!
Wang!" and Hayashil' reported excellent highly enan-
tioselective Michael conjugate additions that were cata-
lyzed by chiral pyrrolidine-based catalysts. However,
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they are generally more complex and prepared in
more steps than a simple amino acid or peptide catalysts.
Herein, we present that simple dipeptides with a catalyt-
ic primary amine residue catalyze the direct asymmetric
Michael addition of ketones to nitroolefins with high
stereoselectivity and furnish the corresponding y-nitro
ketones with up to 68:1 dr and 98% ee.

Based on our research interest in asymmetric cataly-
sis,'”! we recently found that acyclic aliphatic amino
acids catalyze asymmetric intermolecular aldol reac-
tions and Mannich reactions with high stereoselectivi-
ties.""! The lessons from these studies made us interested
in whether acyclic amino acids as well as small peptides
derived from them could react with a ketone and form a
catalytic chiral enamine, which could serve as a nucleo-
phile in Michael additions to nitroolefins [Eq. (1)]. We
expected that addition of a small excess of water would
increase the efficiency and circumvent the need of add-
ing an acidic additive. In addition, water would facilitate
hydrogen bonding and proton transfer, which could
plausibly improve the enantioselectivity of the Michael
reaction.

o} R o R

+ R/\/NOZ H,N/’\R" NO,

R' R? R' R?

R*=CONR,, CNR,

(1)

In an initial catalyst screen of the reaction between cy-
clohexanone 1a and nitroolefin 2a in wet DMSO, we
found that acyclic primary amino acids catalyzed the
asymmetric formation of Michael product (R, S)-3a in
low yields (7-21%) and moderate to good ees (44—
81%) (Table 1). The low yields were due to competing
polymerization of the nitroolefin.

To our delight the N-terminal alanyldi- and tri-pep-
tides were more efficient as compared to the primary
amino acids at room temperature and furnished Michael
product (R,S)-3a in higher yields (40-58%), diastereo-
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Table 1. Catalyst screen.™

ioj + Q/\/NOZ Eo>a°t?7|1xi>slt°/o) i NO,
DMSO
1a 2a (10 equivs. H,O) 3a
Entry Catalyst  Time[h] Temp.['C] Yield [%] dri ee [%]1!
1 ala 120 rt 21 6:1 81
2 asp 144 rt 12 2:1 44
3 Abu 120 rt 15 311 46
4 Nva 120 rt 17 311 52
5 ser 96 rt 21 311 72
6 alanine-tetrazole 60 rt 9 31 72
7 ala-ala 28 rt 55 12:1 84
8 ala-gly 28 rt 58 17:1 78
9 ala-phe 48 rt 40 12:1 85
10 ala-val 72 4 54[€l 22:1 89
11 ala-ala-OEt 216 rt 10 10:1 78
12 (S)y-ala-(R)-ala 30 4 58l 24:1 94
13 val-val 240 4 13t 6:1 42
14 val-phe 120 4 18[€] 7:1 23
15 ser-ala 48 4 340 10:1 74
16 ala-ala-ala 120 rt 37 14:1 84

2] To a suspension of catalyst (30 mol %) in DMSO (1 mL), and H,O (45 pL, 10 equivs.)
were added ketone 1a (0.75 mmol) and nitroolefin 2a (0.25 mmol) and the resulting re-
action mixture was stirred for the time and at the temperature shown in the table.

[®] Isolated yield of pure product 3a.

] dr (syn :anti) as determined by NMR analyses.

4l Determined by chiral-phase HPLC analyses.

[l Reaction performed in a DMSO:NMP-1: 1 mixture.

[ Reaction performed in a DMSO:NMP-1: 1 mixture with 45 mol % catalyst. NMP = N-
methyl-2-pyrrolidinone, Abu=(2§)-2-aminobutyric acid, Nva=(S)-norvaline.

selectivities (6:1-24:1 dr) and ees (78—94%). Thus, in-
creased structural complexity provides superior reactiv-
ity and stereoselectivity for the acyclic amino acid-cata-
lyzed Michael reaction. In addition, the acid moiety of
the dipeptide is important to achieve increased efficien-
cy and asymmetric induction. For instance, the dipeptide
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ala-ala-OEt furnished 3ain 10% yield with 10: 1 dr (syn:-
anti) and 78% ee after 9 days, which is more than 20
times slower than ala-ala. We found that the dipeptides
catalyze the Michael additions with best efficiency in
NMP and DMSO. The highest efficiency and stereose-
lectivity was obtained when the ala-ala mediated reac-
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Table 2. Examples of optimization experiments for the (§)-ala-(S)-ala-, (§)-ala-(S)-phe-
and (§)-ala-(R)-ala-catalyzed Michael addititions.

O (0]
é + ©/\V NO, (glgriljl %) NO;
“sovent

1a 2a (10 equivs. H,0) 3a

Entry  Solvent Time [h] Temp['C] Yield [%]P! dr®! ee [%]¥
1 DMSO 28 rt 55 12:1 84
2 NMP 70 rt 47 21:1 87
3 DMSO 60 4 60 20:1 88
4 DMSO 66 4 55(€] 20:11 g5l
5  DMSO:NMP (1:1) 49 4 47 26:1 91
6  DMSO:NMP (1:1) 47 4 53l 1740 oqf
7 DMSO:NMP (1:1) 50 4 609! 17161 gqld
8  DMSO:NMP (4:1) 75 -20 58 68:1 93
9  DMSO:DMF (9:1) 240 -20 58 30:1 93
10  DMSO:CHCl; (1:1)288 4 18 12:1 88
11 DMSO:NMP (1:1) 72 -20 2 17400 o970

[] To a suspension of catalyst (30 mol %) in solvent (1 mL), and H,O (45 uL, 10 equivs.)
were added ketone 1a (0.75 mmol) and nitroolefin 2a (0.25 mmol) and the resulting re-
action mixture was stirred for the time and at the temperature shown in the table.

[®l Tsolated yield of pure product 3a.

[l dr (syn :anti) as determined by NMR analyses.
4l Determined by chiral-phase HPLC analyses.

el 5 equivs. H,O.

20 equivs. H,O.

el ala-phe used as the catalyst.

(B (§)-ala-(R)-ala used as the catalyst.

tions were performed in a wet (10-20 equivs. H,O) sol-
vent mixture of DMSO:N-methyl-2-pyrrolidinone
(NMP)-1:1 (Table 2).

The reaction was not efficient in CHCI; due to the low
solubility of the dipeptide catalyst. In addition, decreas-
ing the reaction temperature increased the stereoselec-
tivity of the transformation. For example, (S)-ala-(§)-
ala and (§)-ala-(R)-ala catalyzed the asymmetric forma-
tion of 3a with up to 93% and 97% ee, respectively, at
—20°C (Table 2). The results demonstrated that chang-
ing the stereochemistry from (§) to (R) of the C-terminal
amino acid of the dipeptide improved the enantioselec-
tivity of the Michael addition. Encouraged by these re-
sults, we next probed the scope of the (S)-ala-(S5)-ala-
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or (S)-ala-(R)-ala-catalyzed reaction with a set of ke-
tones and nitroolefins (Table 3).

To our delight the dipeptides catalyzed the conjugate
additions with cyclic ketones 1a—d and 1f, g as the do-
nors with excellent enantioselectivity and furnished
the Michael products 3a—g and 3i, j in good yield with
12:1-36:1 dr and 90-98% ee. For example, (S)-ala-
(R)-ala mediated the asymmetric formation of 3b in
79% vyield with 22:1 dr and 98% ee. Having an elec-
tron-withdrawing group at the aromatic moiety of the
nitroolefin increased the reactivity. Moreover, the di-
peptides catalyze the Michael additions with protected
dihydroxyacetone 1d, which is an important donor in
the de novo synthesis of carbohydrates,'” to form 5-ni-

Adv. Synth. Catal. 2006, 348, 418—-424
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Table 3. The (§)-ala-(§)-ala- and (S)-ala-(R)-ala-catalyzed direct enantioselective Mi-
chael additions of ketones to nitroolefins.

O (@] R
X NO
+ RT X2 dipeptide NO,
R'" R? DMSO:NMP (1:1) R R?
1 2 (10 equivs. H,0) 3
Entry Ketone R Product  Condition Yield [%]™ dri® ee [%]'%]
1 1a Ph Q o, A 67 2211 91
2
2 1a Ph B 62 171 97
3 1a Naphthyl NO, g 79 221 98
3
O .
4 1a 4-MeOCgHy4 no, B 76 2001 92
NO,
3c
5 1a 4-NO,CgH,  © o gl 68l 25:16)  ggle]
2
3d
O (@]
NO
6 Q Ph 2 A 58 361 94
00 [oN®)
LI L
1b 3e
(@] 0 (0]
7 Ph NO, on 6ol 19:1l8l g2l
1c 3f 3f
(0] (0]
8 g\ Ph NO, B 30 1211 92
0.0 [oXNge]
A A
1d 39
(0]

Ph , NO, A 60 12 29
@3l (:2)1 (40l

«©
e
O
I

1% 3h
(o] (o]
10 fﬁ Ph NO gl ss 2511 98
S S
1f 3i
(0] (e}
11 fﬁ Ph NO: 95 151 90
(0] (e}
1g 3j
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Table 3. (Continued).

0 o R
o NO
+ RT N2 dipeptide NO,
R' R? DMSO:NMP (1:1) R' R?
1 2 (10 equivs. H,O) 3
Entry Ketone R Product  Condition Yield [%] drl®! ee [%]“]

o} 0O

2 WYY ph H N gl 57 - 58
1h 3k
(0] O

130 Ph NO: A 35 1 es
1i 3l (79)™

2] A =To a suspension of (5)-ala-(S)-ala (30 mol %) in DMSO:NMP (1:1) (1 mL), and
H,O (45puL, 10 equivs.) were added ketone 1 (0.75mmol) and nitroolefin 2
(0.25 mmol) and the resulting reaction mixture was stirred for 3 days at 4 °C. B=To
a suspension of (§)-ala-(R)-ala (45 mol %) in DMSO :NMP (1:1) (1 mL), and H,O
(45 pL, 10 equivs.) were added ketone 1 (0.75 mmol) and nitroolefin 2 (0.25 mmol)

and the resulting reaction mixture was stirred for 3 days at —20 °C.

] Isolated yield of pure product 3a.

[l dr (syn :anti) as determined by NMR analyses.

4l Determined by chiral-phase HPLC analyses.

[} Same conditions as B but the reaction time was 48 h.
[ The combined yield of 3f and 3f (2: 1 ratio).

lel dr for both 3f and 3f.
] ee of 3f.

[l Same conditions as A but reaction performed at —20°C and run for 48 h.
I Same conditions as B but reaction performed at 4°C and run for 48 h.

Kl Same conditions as B but 15 mol % catalyst.

I Same conditions as A but reaction perfotmed at room temperature.

Ml ee of the anti-diastereoisomer.

tro-5-deoxy-5-aryl-5-deoxypentoses such as 3g with
high diastereo- and enantioselectivity (12:1 dr and
92% ee). The ala-ala-catalyzed Michael addition with
cyclopentanone gave the corresponding aldol product
3l in good enantiomeric excess (79% ee). The primary
amino acids and dipeptides were also able to utilize acy-
clicketones and aldehydes as a donors. For example, ala-
ala and (S5)-ala-(R)-ala mediated the asymmetric forma-
tion of Michael products 3h and 3k with excellent regio-
selectivity and moderate enantioselectivity (40% ee)
and in 58% yield with 58% ee, respectively.

We believe that the dipeptide-catalyzed asymmetric
Michael reaction proceeds via a plausible catalytic en-
amine mechanism that is suggested in Figure 1. To ex-
plain the syn-diastereoselectivity and the absolute con-
figuration observed, we propose transition state I based
on Seebach’s model for the dipeptide-catalyzed asym-
metric Michael additions.”™ The acid moiety and the
amide bond of the dipeptide plausibly assist in the stabi-

422 asc.wiley-vch.de

© Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

lization of the transition state, which is improved by a
small amount of water.

In summary, the direct, small peptide-catalyzed enan-
tioselective Michael addition of ketones to nitroolefins
is presented. Simple di- and tripeptides derived from ala-
nine catalyze the asymmetric Michael additions with high
chemo- and stereoselectivity and furnish the correspond-
ing Michael products in high yield with up to 68:1 dr and
98% ee. The study demonstrates that simple peptides
with increased complexity as compared to the parent ami-
no acid mediate the Michael reaction with superior enan-
tioselectivity and reactivity. Thus, readily prepared, high-
ly modular peptides with a primary amine at the N-termi-
nus should be considered in the design and tuning of nov-
el inexpensive organocatalysts for the direct asymmetric
Michael reaction. In addition, small peptides and their
analogues are environmentally benign and non-toxic.
Development of novel catalytic di- and tripeptide libra-
ries and mechanistic studies are ongoing.

Adv. Synth. Catal. 2006, 348, 418—-424
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Figure 1. Plausible reaction mechanism and transition state I for the dipeptide-catalyzed asymmetric nitro-Michael reaction.

Experimental Section

General Procedure for the Conjugate Addition of a
Ketone to a Nitroolefin

To a suspension of catalyst (30 mol %) in DMSO (0.5 mL),
NMP (0.5 mL) and H,O (45 pL, 10 equivs.) were added the rel-
evant ketone (0.75 mmol) and nitroolefin (0.25 mmol). The re-
sulting mixture was stirred for the time and temperature given
in the tables. The reaction was quenched with brine and ex-
tracted with ethyl acetate (3 x 10 mL), the combined organic
phase was dried over anhydrous Na,SO,, filtered and concen-
trated under reduced pressure. The residue was purified by
flash column chromatography (silica gel/pentane:ethyl
acetate=10:1-4:1) to give the Michael products. The ee of
the product was determined by chiral HPLC analysis. Relative
(syn) and absolute configuration of the product was deter-
mined by comparison with the known '"H NMR data and opti-
cal rotation values.
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