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Background & Aims: Increased body iron, genetic hemo- 
chromatosis (GH) mutations, and nonalcoholic fatty liver 
disease (NAFLD) tend to cluster in carbohydrate-intoler- 
ant patients. In an attempt to further clarify the interre- 
lationships among these conditions, we studied 42 car- 
bohydrate-intolerant patients who were free of the 
common GH mutations C282Y and H63D, and had a 
serum iron saturation lower than 50%. Methods: We 
measured body iron stores, and induced iron depletion 
to a level of near-iron deficiency (NID) by quantitative 
phlebotomy. Results: In the 17 patients with clinical 
evidence of NAFLD, we could not demonstrate supranor- 
mal levels of body iron (1.6 _ 0,2 vs. 1.4 --- 0.2 g; P -- 
0.06). However, at NID, there was a 40%-55% improve- 
ment (P = 0.05-0.0001) of both fasting and glucose- 
stimulated plasma insulin concentrations, and near-nor- 
malization of serum alanine aminotransferase activity 
(from 61 _ 5 to 32 ___ 2 IU/L; P < 0.001). Conclusions: 
These results reflect the insulin-sparing effect of iron 
depletion and indicate a key role of iron and hyperinsu- 
linemia in the pathogenesis of NAFLD. 

I t was recently shown that the C282Y and H 6 3 D  
mutations in the HFE gene are common 1,2 in nonal- 

coholic fatty liver disease (NAFLD). In general, carriers 

of HFE mutations had greater hepatic iron concentra- 
tion, an abnormality that positively correlated with the 

degree of fibrosis3 These, as well as similar findings from 
other studies, 3 lead to the opinion that iron might  be an 

important  factor in the progression from steatosis to 

more severe forms of NAFLD. Younossi et al. 4 were 

unable to detect increased hepatic iron in NAFLD. Al- 

beit HFE mutations were not studied, Younossi et al. 

diagnosed NAFLD in many patients without iron over- 

load, and concluded that NAFLD is frequently observed 

even when liver iron concentration is normal. Similar 
conclusions also came from a study by Bonkovsky et al. 5 

who found a high prevalence of HFE mutations in 

NAFLD. Although in the latter 2 studies 4,5 patients were 

selected on the basis of histologic evidence of NAFLD, 

the other investigations considered individuals attending 

iron storage disorders clinics who had high serum or liver 
iron indexes. 1,2 Thus, it remains unknown whether HFE 

mutations and excess iron are as frequent when patients 

are selected from centers, such as diabetic clinics, where 
there is no particular diagnostic or therapeutic emphasis 

on either iron storage or liver disorders. Moreover, it 
remains unknown whether the pathogenetic importance 
of iron is confined to conditions of  HFE mutation-related 

iron overloading or not. In an a t tempt  to address these 
questions we screened 45 consecutive carbohydrate 
(CHO)-intolerant patients for genetic hemochromatosis 

(GH) by both a serum iron saturation index and genetic 
mutational analysis. Patients who carried 1 or 2 copies of 
the C282Y-H63D mutations or had a serum iron satu- 

ration -----50% were excluded. All the remaining patients, 
presumably free of G H  even at a heterozygous level, were 

subsequently venesected to accurately assess body iron 
burden. 

Furthermore, to explore the role of iron in GH-unre-  

lated NAFLD, we measured markers of liver inflamma- 
tion before and after induction of iron depletion to 

near-iron deficiency (NID). 

Materials and Methods 

Patient Selection 

To minimize the effect of potential confounders such as 
severe obesity, long-standing diabetes, and liver disease other 
than NAFLD, we only considered nonmorbidly obese (body 
mass index [BMI] <32 kg/m 2) patients who met the follow- 
ing criteria: (1) history of noninsulin-requiring type 2 diabe- 

Abbreviations used in this paper: CHO, carbohydrate; GH, genetic 
hemochromatosis; HOMA, homeostasis model assessment; IGT, im- 
paired glucose tolerance; IFG, impaired fasting glucose; MCV, mean 
corpuscular cell volume; NAFLD, nonalcoholic fatty liver disease; NID, 
near-iron deficiency; NIDDM, type 2 diabetes; OGTr, oral glucose tol- 
erance test. 
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History of NIDDM for < 5 years; 
BMI < 32kg/m z 

(n=45) 

I 
GH testing: free of GH (n=42) 

baseline testing 

IGT / IFG ] NIDDM 
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I NAFLD tasting t - -  

(n=24) (n=18) 

I Quantitative Phlebotomy [ 

completed drop-out 
(n=39) (n=3) 

(n=22/17, no NAFLD/NAFLD) (n=2J1), no NAFLD/NAFLD) 

Figure 1. Flowchart summarizing selection, screening, and the final 
number of patients completing the experimental protocol. 

tes 6 for no longer than 5 years; (2) ethanol intake lower than 20 
g/day; (3) not consuming any medication known to cause 
hepatic steatosisV; (4) not affected by any other acute or chronic 
illness; (5) normal serum copper, alkaline phosphatase, ceru- 
loplasmin, and oq-antitrypsin concentrations; and (6) negative 
antinuclear antibodies and serologies for viral hepatitis (A, B, 
or C). 

Forty-five consecutive patients fulfilling these criteria were 
subsequently screened for GH. Forty-two (93%) had a serum 
iron saturation lower than 50% and negative mutational DNA 
analysis for C282Y/H63D. 8 After giving their informed con- 
sent, these 42 patients entered the study protocol. The patient 
selection process is summarized in Figure 1. 

Experimental Protocol 

After overnight fasting, blood was drawn for measure- 
ment of serum aminotransferase activity, 9 plasma glucose, s° 
insulin, 1~ HgBAlc ,  le fructosamine, 13 iron, 14 transferrin, ~5 and 
ferritin. ~6 A 75-g, 3-hour oral glucose tolerance test was also 
performed. The insulin assay (Pharmacia Corp., Peapack, NJ) 
had a 41%, 0.18%, and <0 .1% cross reactivity with proin- 
sulin, c-peptide, and insulin-like growth factor (IGF) 1 and 2, 
respectively. At baseline testing, 5 of 42 patients met criteria 6 
for impaired glucose tolerance (IGT) or impaired fasting glu- 
cose (IFG). Type 2 diabetes was confirmed in the remaining 37 

individuals (Figure 1). Since IGT and IFG are also carbohy- 
drate intolerant states the 5 patients were not excluded from 
the study. To estimate insulin sensitivity we used both plasma 
insulin concentration and the homeostasis model assessment 
(HOMA), t7 which, particularly in log form, was shown to 
better correlate with in vivo insulin-mediated glucose uptake 
in type 2 diabetes patients, is NAFLD was diagnosed by a 
serum alanine aminotransferase (ALT) activity over 30 IU/L in 
at least 2 separate occasions (during the previous 6 months) 
with bright liver on ultrasonography and no history of infec- 
tious hepatitis. Wi th  these criteria, there were 18 patients 
with NAFLD and 24 without. In CHO-intolerant patients 
without NAFLD, serum ALT was lower than 30 IU/L and liver 
echogenicity normal. 

After baseline tests, quantitative phlebotomy 19 was initiated 
in both groups. Half-liter phlebotomies were performed 
monthly or bimonthly under topical anesthesia with 0.5-1.0 
mL of 1% lidocaine, until all subjects reached NID. NID was 
arbitrarily defined as the anemia-free condition characterized 
by a serum ferritin concentration lower than or equal to 30 
Dg/L, serum iron saturation lower than or equal to 15% and a 
mean corpuscular cell volume (MCV) lower than or equal to 82 
ft. At NID,  baseline body iron stores were estimated as follows: 
(baseline Hct + NID Hct/2) × blood volume removed 
(mL) × 1 mg/mL. 

Metabolic measurements were repeated in similar fashion 
after a 1-month time interval from the last phlebotomy. A 
pilot study showed that such an interval is sufficient for 
correction of those minimal degrees of hemodilution occasion- 
ally observed after phlebotomy. 2° 

Statistics 

Results were averaged, expressed as mean -+ SEM, and 
frequency distribution was estimated for each variable. Un- 
paired Student t test was used for group comparison. Values at 
NID were compared with baseline by either paired (2-tailed) 
Student t test or the Wilcoxon-matched pairs test for normally 
distributed and nonparametric correlated variables, respec- 
tively. Nonparametric variables were serum fructosamine, fer- 
ritin, and insulin concentrations. 

Statistical analysis was performed with a commercial soft- 
ware (Statsoft-Inc., Tulsa, OK) for the Macintosh (mod.iMAC, 
Apple Computers, Cupertino, CA). 

Resul ts  

Three of  42 (1 w i th  and 2 w i thou t  N A F L D )  

pa t ien ts  d ropped  out  secondary to poor  venous access and 

fatigue.  Th i r t y -n ine  pat ients ,  17 wi th  and 22 wi thou t  

N A F L D ,  comple ted  the s tudy.  The  cl inical  characteris-  

tics of  the  2 groups  are summar ized  in Table  1 and 

Figure  1. Pat ients  w i th  N A F L D  were ne i ther  older  nor 

s ignif icant ly  heavier  than  pa t ien ts  w i thou t  N A F L D  

(BMI = 29 + 0.6 vs. 28 + 0.9 kg/m2; P = 0.2). Dura-  

t ion of  diabetes,  t r ea tmen t  modal i t ies ,  and g lucometa -  
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Table 1. Clinical and Demographic Characteristics of 
Patients With and Without NAFLD 

Variable NAFLD No NAFLD 

N 17 22 
Age (yr) 49 _+ 9 47 + 8 
Gender (M/F) 12 /5  12 /10  
NIDDM/IGT-IFG 15 /2  19 /3  
NIDDM (yr) 3 ± 1 3 ± 1 
BMI (kg/m 2) 29 ± 1 28 ± 1 
Diet Rx only 3 5 
Sulfonylureas 10 12 
Metformin 4 5 

bolic control were also similar in the 2 groups (Tables 
1-3). Compared with patients without NAFLD, patients 
with NAFLD had a 3-fold elevation of serum ALT 
(61 4- 5 vs. 19 4- 1 lUlL; P < 0.001), a 2.5-fold eleva- 
tion of fasting insulin levels (258 4- 32 vs. 108 + 19 
pmol/L; P < 0.001), as well as higher storage iron 
(1.6 + 0.2 vs. 1.4 4- 0.2 g; P = 0.06). At NID, deple- 
tion of body iron stores, as indicated by reductions of 
MCV, ferritin, and serum iron saturation, was compara- 
ble in both groups (Tables 2 and 3). As compared with 
baseline, at NID there was no significant change in body 
weight or in medication usage. Despite no change in 
body weight and medications, there were notable meta- 
bolic changes, particularly in patients with NAFLD. As 
illustrated in Figures 2 and 3 fasting insulin decreased 
--40% (from 258 4- 32 to 152 + 17 pmol/L; P < 
0.001) and 3-hour oral glucose tolerance test (OGTT) 
insulin decreased > 5 0 %  (from 1104 + 144 to 498 
4- 67 pmol/L; P < 0.001). 

In patients without NAFLD (Figures 3 and 4) fasting 
insulin was unchanged (from 108 4- 19 to 96 - 5; P = 
NS), whereas 3-hour O G T T  insulin decreased --40% 
(from 468 4- 67 to 271 + 47; P <0.001).  

In patients with NAFLD, the reductions in insulin 
concentrations were parallelled by statistically significant 
decreases in glucose levels (Figure 3), aspartate amino- 
transferase (AST) (from 27 4- 2 to 22 4- 1 IU/L; P < 
0.05), and ALT (from 61 4- 5 to 32 + 2 IU/L; P < 
0.001). On the contrary, ALT and AST were unchanged 

Table 2. Iron and Chronic Gluco-Metabolic Parameters at 
Baseline and NID: Patients With NAFLD 

Variable Baseline NID P 

Ferritin (10-300 I-g/L) 299 + 41 15 + 1 <0 .001  
Iron saturation (15%-55%) 28 _+ 2 11 _+ 1 <0 .001  
MCV (80-96 fl) 86 + 2 80 + 2 <0 .001  
Hct (38%-48%) 42 + 1 40 + 1 NS 
HgbAlc (4.8%-6.0%) 7.9 + 0.6 6.8 ± 0.4 <0 .01  
Fructosamine (0-265 i~mol/L) 279 ± 11 261 ± 10 0.05 

Table 3. Iron and Chronic Gluco-Metabolic Parameters at 
Baseline and NID: Patients Without NAFLD 

Variable Baseline NID P 

Ferritin (10-300 I,g/L) 220 ± 40 13 +__ 1 <0 .001  
Iron saturation (15%--55%) 33 + 3 9 _+ 1 <0 .001  
MCV (80-96 fl) 90 ± 2 81 + 0.5 <0 .001  
Hct (38%0-48%) 42 + 1 40 ± 1 NS 
HgbAlc (4.8%-6.0%) 7.6 + 0.5 6.9 ± 0.4 <0 .05  
Fructosamine (0-265 i~mol/L) 303 _+ 17 286 + 16 NS 

in patients without NAFLD (from 19 + 1 to 17 + 1 
1U/L; and from 14 + 1 to 15 4- 1, respectively; P = 
NS). Individual changes of serum ALT activity, from 
baseline to NID, are shown in Figure 5. 

Discussion 

Hepatic steatosis with or without inflammation is 
commonly observed in carbohydrate-intolerant individ- 
uals. 21-26 In this setting, when soft hepatomegaly and an 

otherwise unexplained 1.5-5-fold increase of serum ALT 

activity (in the absence of signs of chronic liver failure) 
are detected, diagnosis of NAFLD is generally unequiv- 
ocal24,26 Apart from a greater prevalence of obesity, 
NAFLD and CHO-intolerance share other attributes, 
notably, impaired glucose metabolism, a hyperinsuline- 
mic response to carbohydrates, and insulin resis- 
tance. 22-26 Similar features also characterize G H  and 

recent studies indicated that 1 in 3 patients with 
NAFLD have increased liver iron ~-3 and up to 70% carry 
either 1 or 2 copies of the common HFE mutations 
C282Y or H63D. 5 In an attempt to further clarify the 
complex interrelationships among CHO-intolerance, 
NAFLD, and body iron stores, we studied consecutive 
patients from diabetic clinics in whom G H  was excluded 
by sensitive screening. Hence, the following observations 
apply to individuals who are free of the 2 common HFE 
genotypes associated with GH,  as well as of phenotypic 
G H  (serum iron saturation lower than 50%). 

The first observation was that CHO-intolerant indi- 
viduals with NAFLD were not iron overloaded. This 
finding agrees with some, 4,5 although not all, 1-3 existing 

studies. In the latter reports, patients with high serum 
(or liver) iron indexes were studied, indicating sampling 
the upper ranges of the gender-specific iron storage fre- 
quency distribution. On the contrary, when patient se- 
lection relied on other criteria, such as presence or ab- 
sence of NAFLD on liver biopsy, iron overload was less 
commonly observed. 4,5 The current investigation pro- 
vides further evidence in this direction, i.e., when pa- 
tients are selected from clinics where there is no special 
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Figure 2. (A) Individual changes 
in HOMA-IR, (B) log HOMA-IR, (C) 
fasting glucose, (D) and fasting 
insulin between baseline and 
NID in individuals with NAFLD. 
Open circles represent patients 
with IGT/IFG. Closed circles 
represent patients with type 2 
diabetes. 

interest in iron storage disorders and GH is excluded, 
NAFLD and CHO intolerance appear commonly associ- 
ated even in conditions of iron sufficiency. 

A second finding of the present study was that, when 
compared with patients without NAFLD, individuals 

with NAFLD had a 250% and a 10% elevation of fasting 
insulin and glucose concentrations, respectively. Thus, 
carbohydrate-intolerant individuals with NAFLD were 
more hyperglycemic and hyperinsulinemic than those 
without NAFLD, despite comparable age, BMI, duration 
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Figure 3, Plasma glucose and 
insulin concentrations during a 
3-hour oral glucose tolerance 
test performed at baseline 
(solid line) and NID (dashed 
line) in patients with NAFLD 
and without NAFLD. 
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of diabetes, and glucometabolic control. This conclusion 
is consistent with the notion that NAFLD is closely 
related to insulin resistance and hyperinsulinemia 22-26 
even at a preclinical stage, 22 i.e., before development of 
diabetes and severe obesity. A preclinical association 
suggests an important causal role Of hyperinsulinemia in 
steatogenesis and several lines of evidence support this 
view: (1) in vitro, fatty acid oxidation is inhibited and 
triglyceride synthesis activated by hyperinsulinemia with 
consequent cytoplasmic accumulation of triacylglyc- 
ero127-29; (2) intraperitoneal insulin injection, in vivo, 

caused subcapsular steatonecrosis, a localized form of 
NAFLD, presumably secondary to exposure of superficial 
hepatocytes to high insulin concentrations3°; (3) various 
insulin-sensitizing maneuvers, such as physical activity 
and calorie restriction,23~ 31 partially reversed steatosis in 
humans, whereas the insulin-sensitizing drug metformin 
had a similar effect in rats)  2 In this context, the well- 
known muscle contraction-like effect of iron depletion on 
glucose transport in rats, calves, and normal humans 33-36 
might assist with the explanation of our current findings. 
The insulin-sparing effect of iron depletion was linked to 
enhanced glucose transporter GLUT1 and 4 activity 3v,38 

and rather than the method used to induce iron deple- 
tion, e.g., selective dietary exclusion of the metal, bleed- 
ing, or chelation, the relevant factor consisted in reaching 

a depletion threshold) 3-36 Such a threshold coincided 
with the lowest level of storage iron sufficient to prevent 
anemia (e.g., NID) or with frank iron deficiency causing 
anemia. Thus, enhanced skeletal muscle glucose trans- 
port and metabolism 39,4° likely accounted for the reduc- 
tions of plasma glucose and insulin levels noted in our 
patients. Although insulin resistance was not directly 
measured, such a conclusion appears appropriate because 
there is consensus on use of plasma insulin concentrations 
as surrogate measurements of insulin resistance in both 
normal and diabetic subjects, 41.42 particularly when the 
HOMA model is used. t8 Independent from the precise 
mechanism(s), it is now possible to extend the notion of 
an insulin-sparing effect of NID on glucose homeostasis 
to CHO-intolerant patients with NAFLD. 

A third finding of the current study was that ALT 
activity halved and nearly normalized at NID. A decrease 
was noted in every patient with NAFLD, whereas no 
change occurred in those without NAFLD. As the re- 
duction of serum ALT activity could not be attributed to 
methodological bias, it seems obvious it was a specific 
consequence of phlebotomy. There are earlier observa- 
tions that phlebotomy-induced iron depletion improved 
ALT in small numbers of patients with NAFLD.%4~.44 

However, in those uncontrolled studies, patients were 
not characterized in terms of HFE mutations, glucose 
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Figure 4. (A) Individual changes 
in HOMA-IR, (B) log HOMA-IR, (C) 
fasting glucose, (D) and fast- 
ing insulin between baseline 
and NID in individuals without 
NAFLD. Open circles represent 
patients with IGT/IFG. Closed 
circles represent patients with 
type 2 diabetes. 

tolerance state, or both. In the current study, all patients 
were CHO-inmlerant,  not iron overloaded, and free of 
the 2 common HFE genotypes associated with GH,  as 
well as of phenotypic G H  (serum iron saturation lower 
than 50%). Therefore, NID seems effective in improving 

markers of liver inflammation and oral glucose tolerance 
even in patients who have no apparent iron storage 
disorder. We suggest that, by enhancing insulin sensi- 
tivity and reducing iron-mediated oxidative stress, NID 
diminished hepatocyte substrate load, lipid peroxidation, 
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hepatocellular injury, and serum ALT activity. Albeit 
speculative, this hypothesis is supported by studies 
where oxidative stress and lipid peroxidation caused ex- 
perimental NAFLD, 45 and by others, where iron chela- 
tion lowered and iron loading enhanced both oxidative 
stress and lipid peroxidation. 46-48 

We used clinical, not histological, criteria to diagnose 
NAFLD. However, we doubt other causes of liver in- 
flammation, such as cryptic viral infection, could affect 
our conclusions. In fact, such an eventuality appears 
unlikely 49,5° and not precluding the beneficial effect of 

NID on markers of liver inflammation. Nonetheless, a 
change in ALT may not reflect the histology or progres- 
sion to fibrosis, and in this study we could not assess 
whether or not iron depletion had favorable effects on 
prognostic indicators. 

There is anecdotal evidence that liver fibrosis may 
regress after iron depletion. 44 Furthermore, hyperfer- 
ritinemic individuals with insulin-resistance-associated 
hepatic iron overload can have symptom relief after vene- 
section. 5. However, in our opinion iron depletion to 
NID should remain investigational until controlled bi- 
opsy studies will elucidate whether or not serious hepatic 
fibrosis will prove to be safely preventable with long- 
term maintenance of NID. 

In summary, it was shown that CHO-intolerant indi- 

viduals with NAFLD are more hyperglycemic and, espe- 
cially, more hyperinsulinemic than CHO-intolerant pa- 

tients without NAFLD. Despite normal body iron stores, 
iron depletion to NID markedly lowered insulinemia, 

and nearly normalized serum ALT activity indicating the 

detrimental effect iron sufficiency has in susceptible in- 
dividuals. These results lend further credence for a cen- 

tral pathogenetic role of iron, insulin resistance, and 

hyperinsulinemia in the genesis of GH-unrelated 

NAFLD. 
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