Total Synthesis of the Sesquiterpene (-)-Daucene

By Masaki Yamasaki†

(Laboratory of Chemistry, Faculty of Engineering Science, Osaka University, Osaka, Japan)

Summary (-)-Daucene (11) has been synthesized from (R)-(+)-limonene (1).

DAUCENE isolated from carrot seeds (Daucus carota L.) is a

DAUCENE isolated from carrot seeds (*Daucus carota* L.) is a bicyclic sesquiterpene with the unique carotane skeleton.¹

An unusual mechanism for the biosynthesis of this skeleton has been proposed by Soucek.² We describe here the first synthesis of (—)-daucene (11).

Oxidation of (R)-(+)-limonene (1) $\{[\alpha]_D^{20} + 110^\circ (c \ 1.16)^{\ddagger}\}$ with peroxybenzoic acid in chloroform afforded the ex-

- † Correspondence to: Department of Biochemistry, Medical School, Osaka University, Osaka, Japan.
- ‡ All rotations were measured for ethanolic solutions.

pected 1,2-monoepoxide (2) $\{ [\alpha]_D^{20} + 32 \cdot 3^{\circ} (c \ 1 \cdot 13) \}$, which was hydrolysed (1% H₂SO₄) to the crystalline 1,2-diol³ (3)

 $\{ [\alpha]_D^{23} + 16.3^{\circ} \ (c \ 0.920) \} \ [ca. \ 66\% \ \text{from} \ (1)].$ The crude ketoaldehyde (4) obtained by cleavage of diol

(3) with NaIO₄ in tetrahydrofuran was cyclized in the presence of piperidine and acetic acid to give the $\alpha\beta$ -unsaturated aldehyde (5) $\{ [\alpha]_{D}^{20} + 21.4^{\circ} (c \ 1.03) \}$ [40% from (3)]. (5) was transformed into the dienone (6) $\{[\alpha]_D^{27} + 44.7^{\circ}\}$ $(c \ 0.974)$ (37%) on treatment with acetone and 3n-NaOH.4

Treatment of (6) with sodium and ethanol followed by oxidation by Jones procedure gave the desired ketone (7) $\{[\alpha]_D^{28} + 85.9^{\circ} (c \ 0.920)\}$, but in less than 5% yield. The $\alpha\beta$ double bond in the ketone (6) was found to be saturated selectively by reduction with triphenyltin hydride⁵ in refluxing toluene for 4 h (81% yield).

Treatment of the ketone (8) $\{ [\alpha]_D^{27} -14\cdot 0^{\circ} \ (c\ 0\cdot 784) \}$, prepared by catalytic hydrogenation [Pd-C (10%) in EtOH] of (7), with sodium acetylide in liquid ammonia yielded the acetylenic carbinol (9) $\{ [\alpha]_D^{29} + 6.45^{\circ} (c \ 0.954) \}$, which was then hydrogenated selectively (Lindlar catalyst in hexane) to the corresponding allylic alcohol (10) $\{[\alpha]_D^{23} - 3.65^{\circ}\}$ $(c \ 1.00)$ [57% from (7)].

Acid-catalysed cyclization of the allylic alcohol⁶ (10) with formic acid for 10 min at room temperature gave 5 compounds, which were separated by chromatography on silica gel in yields of 42, 20, 16,§ 15, and 7%. The main component was further purified by preparative t.l.c. on 10%AgNO₃-SiO₂, and identified as (-)-daucene (11) {v_{max} 830 cm⁻¹; δ 0.92 (3H, d, J 5 Hz), 0.99 (3H, d, J 5 Hz), 0.94 (3H, s), 1.73 (3H, s, W_{\star} 4 Hz), and 5.37 (1H, t, J 5 Hz) p.p.m.; $[\alpha]_D^{21} - 21.5^{\circ}$ (c 0.752); m/e 204 (M+)) by comparison with an authentic sample prepared from natural carotol.7 The author thanks Dr. H. Chikamatsu for valuable advice.

(Received, 6th March 1972; Com. 376.)

§ The n.m.r. spectra of one of the components (16%) was consistent with structure (12) but the other three products were not identified.

- ¹ G. V. Pigulevskii and V. I. Kivaleva, Doklady Akad. Nauk S.S.S.R., 1961, 141, 1384.
- M. Soucek, Coll. Czech. Chem. Comm., 1962, 27, 2929.
 J. Wolinsky and W. Barker, J. Amer. Chem. Soc., 1960, 82, 636.
- ⁴ J. Wolinsky, M. R. Slabaugh, and T. Gibson, J. Org. Chem., 1964, 29, 3740.
 ⁵ E. Yoshii and M. Yamasaki, Chem. and Pharm. Bull. (Japan), 1968, 16, 1158.
- ⁶ W. S. Johnson, N. P. Jensen, J. Hooz, and E. J. Leopold, J. Amer. chem. Soc., 1968, 90, 5872; J. A. Marshall, N. Cohen, and A. R. Hochstefler, ibid., 1966, 88, 3408.

 ⁷ J. Levisalles and H. Rudler, Bull. Soc. chim. France, 1967, 2059.