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ABSTRACT: Fluorinated piperidines are desirable motifs for pharmaceutical and agrochemical research. Nevertheless, general syn-

thetic access remains out of reach. Herein we describe a simple and robust cis-selective hydrogenation of abundant and cheap fluor-

opyridines to yield a broad scope of (multi)fluorinated piperidines. This protocol enables the chemoselective reduction of fluoro-

pyridines while tolerating other (hetero)aromatic systems using a commercially available heterogenous catalyst. Fluorinated deriva-

tives of important drug compounds are prepared and a straightforward strategy for the synthesis of enantioenriched fluorinated piper-

idines is disclosed.  

Fluorine has become recognized as a potent substituent in me-

dicinal, agricultural, and material science over the last dec-

ades.(1) Owing to their high polarity, carbon–fluorine bonds are 

deliberately installed in drug candidates to optimize their physi-

cochemical properties.(2) Although fluorine is barely found in nat-

ural products, almost one quarter of all small-molecule drugs in 

the market contain at least one fluorine atom.(3) For instance, flu-

orine’s strong preference for gauche orientation is widely utilized 

to establish conformationally-defined building blocks.(4) Besides 

fluorine, nitrogen-containing heterocycles are an outstandingly 

important moiety commonly found in natural products and phar-

maceuticals.(5) 

Figure 1. Synthetic strategies to access fluorinated piperidines. 

 

A recent investigation revealed that 59% of all small-molecule 

drugs approved by the FDA contain at least one N-heterocycle.(6) 

Undoubtedly, the combination of both, fluorine substituents and 

N-heterocycles is of great interest to pharmaceutical and agricul-

tural researchers.(7) Although piperidine is the most abundant 

heterocycle in pharmaceuticals, a straightforward and general 

synthesis of fluorinated piperidines remains challenging.(8) Com-

mon synthetic fluorination pathways such as electrophilic and 

nucleophilic substitution offer only limited access to fluorinated 

piperidines.(9) 

An alternative retrosynthetic strategy is the formation of piperi-

dines from fluorinated precursors.(10) Given the broad availability 

of fluorinated pyridines, metal-catalyzed hydrogenation is recog-

nizable as a powerful tool to transform these to the desired sat-

urated building blocks (Figure 1a).(11) This synthetic approach, 

however, is hampered by the competing hydrodefluorination 

pathway, leading to undesired non-fluorinated piperidines.(12) 

 

Table 1. Standard reaction conditions and selected devia-

tions.  

Entry Deviation Yield B Conv. A 

1 none 88% >99% 

2 Rh/C (5 wt%) 53% >99% 

3 Rh/Al2O3 (5 wt%) traces <5% 

4 Pt/C (5 wt%) 6% >99% 

5 Ru/Al2O3 (5 wt%) traces <5% 

6 Pd/C (10 wt%) 83% >99% 

7 no acid 17% 78% 
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Chart 1. Substrate scope for the palladium-catalyzed hydrogenation of fluoropyridines. See Supporting Information for full 

experimental details. 

 

To address this problem, our group recently reported the devel-

opment of a dearomatization-hydrogenation (DAH) process (Fig-

ure 1b).(13) Although this process allowed access to a series of 

fluorinated piperidines for the first time, the synthetic utility is lim-

ited. Firstly, owing to the use of hydridic HBpin, polar and/or pro-

tic functional groups such as esters, amides, alcohols and free 

amines are not tolerated under the reaction conditions. 

Moreover, since rhodium is one of the most active transition met-

als for arene reduction, a general chemoselective hydrogenation 

of pyridines over other (hetero)arenes such as benzene or imid-

azole was not possible.(14) Additionally, the reactivity of the DAH 

process is highly dependent on the purity of reagents and sol-

vents applied. 

With these drawbacks in mind, we were searching for a direct 

hydrogenation without the need for a dearomatizing agent to cir-

cumvent the functional group incompatibility and sensitivity prob-

lems affiliated with the DAH process (Figure 1c).(15) 

To start our investigations, we studied the reduction of 3-fluoro-

pyridine in organic solvents using various heterogeneous cata-

lysts. Early experiments indicated that many catalysts are not 

sufficiently active under these conditions. Thus, we tried to solve 

both issues through protonation of both the substrate and prod-

uct with Brønsted acid.(16) To our delight, we found that the com-

bination of Pd(OH)2 on carbon (20 wt%) with aqueous HCl in 

MeOH is a suitable and simple system for the hydrogenation of 

fluorinated pyridines (Table 1, entry 1). In contrast, several com-

mon heterogeneous catalysts gave less or only traces of the de-

sired fluorinated product B (entries 2–6). Omitting the strong 

Brønsted acid results in diminished conversion and formation of 

the defluorinated side product C dominates (entry 7). Notably, no 

special care was taken to exclude air and moisture during reac-

tion setup within this study – an attractive feature. 

A recently described reaction-condition-based sensitivity screen 

revealed, that our procedure is insensitive towards small devia-

tions of concentration, pressure, temperature and the presence 
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of oxygen or moisture (see Supporting Information for further de-

tails).(17) 

Having optimized reaction conditions in hand, we then investi-

gated the substrate scope of the protocol (Chart 1). Since purifi-

cation of volatile, unprotected fluorinated piperidines is challeng-

ing, we investigated the trapping with different protecting groups. 

Fluorinated piperidines 1 and 2 were isolated in high yields after 

in situ benzyloxycarbonyl (Cbz) protection. Performing the syn-

thesis of piperidine 2 in a gram-scale reaction afforded the de-

sired product in 67% yield. Likewise, Fmoc-protected fluorinated 

piperidine 3 was obtained in good yield and excellent diastere-

oselectivity after in situ trapping. 

Further, amide- (4) and sulfonamide-protecting groups (5) could 

also be employed and in both cases the products were isolated 

in good yield and excellent diastereoselectivity. Difluorinated pi-

peridine 6 was isolated in 30% yield after Cbz protection, owing 

to significant formation of single- and double-defluorinated side 

products. 

In contrast to our previous study,(13) free hydroxy groups were 

tolerated under the reaction conditions and led to the isolation of 

valuable δ-lactam products 7 and 8 in good yields, respectively. 

Our catalytic system facilitated the cis-selective reduction of 

fluoropyridines over benzene rings and enabled the synthesis of 

5-fluoro-2-phenylpiperidine (9) in good diastereoselectivity.(18) A 

series of multi-fluorinated 2-aryl-5-fluoropiperidines 10–13 were 

synthesized in good to moderate yields and high diastereoselec-

tivities. 

Moreover, aryl- and alkyl ether substituted aryl-fluoropiperidines 

14–16 and ester substituted piperidine 17 were synthesized in 

good yield and excellent diastereoselectivity, respectively. Fur-

thermore, multifluorinated 4-aryl-3-fluoropiperidines 18 and 19 

were synthesized in THF/H2O while not-fully reduced fluorinated 

tetrahydropyridine 20 was obtained in moderate yield when 

changing the solvent to MeOH. To our delight, 2-aryl-3,5-dilfluor-

opiperidine 21 was synthesized after elongated reaction time in 

good yield and diastereoselectivity.  

Fluorinated, unnatural amino acids are of high interest, but syn-

thetic access remains difficult.(19) Our protocol allows the isola-

tion of 22 after a single reaction step from a commercially avail-

able starting material in 62% yield. Moreover, this method re-

veals access to β-amino acid 23 and tetrahydropyridine γ-amino 

acid 24. Besides esters, a series of amide-substituted fluorinated 

piperidines 25–30 was synthesized. 2-Phenylacetamide substi-

tuted piperidine 31 was isolated in 52% yield and only two dia-

stereomers in a 71:29 ratio were observed. NMR and X-ray anal-

yses revealed cis-configuration for both isolated isomers with the 

erythro isomer as the main component. 

To further investigate the selective reduction of fluorinated pyri-

dines over other (hetero)arenes, we tested the hydrogenation of 

various imidazo[1,2-a]pyridines. To our delight, 6-fluoro-5,6,7,8-

tetrahydroimidazo[1,2-a]pyridine (32) was isolated without re-

duction of the imidazole ring being observed. A series of 2-sub-

stituted (multi)fluorinated tetrahydroimidazo[1,2-a]pyridines 33–

37 were synthesized in good yields tolerating alkyl, aryl, trifluo-

romethyl and ester substituents. 

Many of the products listed in Chart 1 were isolated in diminished 

yields and accompanied with non-fluorinated piperidines. This is 

due to remaining hydrodefluorination reactions, which are not 

completely suppressed by our new catalytic system.  

  

Scheme 1. Synthesis of fluorinated methylphenidate (a), bu-

pivacaine (b), ropivacaine (c), and enantioenriched 3-fluor-

opiperidine (d). 

Preliminary mechanistic investigations indicate that hydro-

defluorination occurs on dearomatized intermediates (see Sup-

porting Information for further details). The beneficial role of the 

Brønsted acid on reactivity towards hydrogenation has been in-

vestigated in the literature(20) yet the influence on hydrodefluori-

nation remains unclear. Further mechanistic investigations are 

ongoing but beyond the scope of this study. 

The conformational behavior of fluorinated piperidines aroused 

the interest of physical-organic chemists.(21) A recent, detailed 

study investigated the fundamental interactions of fluorinated pi-

peridines.(22) NMR analysis of the free NH piperidines synthe-

sized in this study proved the gauche conformation of the prod-

ucts in CDCl3.  

To further show the utility of our developed method, several fluor-

inated drug derivates have been prepared (Scheme 1). Fluori-

nated methylphenidate (Ritalin©, Concerta©) 38 was obtained in 

89% yield from 31 after stirring in MeOH in the presence of 

H2SO4. Free NH piperidines 26 and 28 were prepared applying 

our new protocol and were transformed into fluorinated deriva-

tives of bupivacaine 39 and ropivacaine 40, respectively. 

Our method can be further expanded to the synthesis of enanti-

oenriched fluorinated piperidines. Adopting a strategy which was 

previously established in our lab,(23) oxazolidine-substituted pyr-

idine 41 was prepared. Under acidic conditions, pyridine 41 was 

hydrogenated to the corresponding oxazolidine-substituted pi-

peridine in a diastereoselective fashion. In situ cleavage of the 

auxiliary followed by reduction of the imine intermediate gave the 

enantioenriched piperidine 42 in 55% yield and 95:5 e.r. after 

Cbz protection. After the protecting group was removed, the ab-

solute configuration of 3-fluoropiperidine·HCl was determined 

using X-Ray analysis. 
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In summary, we have developed a new method to access highly 

valuable fluorinated piperidines based on a palladium-catalyzed 

hydrogenation. This protocol enables the transformation of 

cheap and abundant fluoropyridines to sought-after fluorinated 

piperidines in a robust and simple manner. Using a common het-

erogeneous palladium catalyst, a selective reduction of fluoro-

pyridines over benzene and imidazole systems was established. 

The robustness of our method was demonstrated by applying a 

reaction-condition based sensitivity assessment, revealing high 

tolerance for the presence of air and moisture. The products are 

obtained in good yields and high diastereoselectivities and the 

synthetic utility was highlighted by the synthesis of fluorinated 

drug derivatives. Furthermore, this method was expanded to the 

synthesis of highly enantioenriched fluorinated piperidines in a 

straightforward fashion. 
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