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This paper describes a chiral Brønsted acid catalyzed 
asymmetric 1,2-rearrangement of racemic epoxides via a 
hydrogen-shift process for the synthesis of chiral aldehydes, 
and followed by a reduction, a variety of optically active 
alcohols can be furnished in moderate yields with up to 50% 10 

ee. Especially, a facile one pot synthesis of chiral alcohols 
directly from simple alkenes by a sequential epoxidation, 
rearrangement, and reduction, has also been realized.  

Chiral aldehydes are important chemicals for the straightforward 
synthesis of optically active amines, imines, alcohols, acids and 15 

so on. Accordingly, their asymmetric synthesis attracts broad 
interest, and significant progress has been made in this area.1,2 
Epoxides are versatile functional groups in synthetic chemistry, 
and the asymmetric 1,2-rearrangement of epoxides via either a 
semi-pinacol or Meinwald rearrangement process also provides 20 

an elegant approach to chiral aldehydes.3,4 Various Lewis acids 
have been reported to promote the substrate-controlled 
asymmetric rearrangement of chiral epoxides to produce optically 
active aldehydes.5 For example, in 1989, Yamamoto and 
coworkers reported an organoaluminum-promoted rearrangement 25 

of chiral epoxy silyl ethers to siloxy aldehydes.5a In 2004, the 
Suda group successfully employed a chromium-porphyrin 
complex for the same transformation.5c Very recently, the 
Schreiner group accomplished a challenging stereospecific 1,2-
rearrangement reaction of readily accessible enantioenriched tri-30 

substituted epoxides to quaternary aromatic carbaldehydes under 
the catalysis of silicon-thiourea Lewis acids.5g However, to the 
best of our knowledge, chiral catalyst controlled asymmetric 1,2-
rearrangement of racemic epoxides has rarely been reported and 
still remains as a challenge. 35 

Chiral Brønsted-acid catalysis has witnessed a rapid growth in 
recent years,6 and has also been successfully applied to several 
types of asymmetric rearrangement reactions.7 In contrast to the 
wide usage of Lewis acids for the 1,2-rearrangement of 
epoxides,5 Brønsted acids have seldom been employed for this 40 

transformation. To realize the challengeable of chiral Brønsted 
acid catalyzed 1,2-rearrangement of racemic epoxides, we 
envision that 1,1-disubstituted epoxides 1 may be suitable 
substrates which will ensure the regiospecific generation of cation 
immediate 2 and exclude the competition between H-shift and 45 

alkyl-shift for tri-substituted epoxides to furnish the desired 
enantioenriched aldehydes 3 (Scheme 1). Herein, we report our 
efforts on this subject. 

Scheme 1. Strategy for Brønsted Acid catalyzed Asymmetric H-
Shift of Epoxides 50 

 
 

Scheme 2. Selected Brønsted Acid Catalysts8 for the 
Rearrangement of Epoxides 

 55 

 
Initially, -methylstyrene epoxide (1a) was chosen as a 

substrate for the chiral Brønsted acid catalyzed asymmetric 1,2-
rearrangement, and due to its instability, the obtained aldehyde 3a 
was directly converted to the corresponding alcohol 4a (Scheme 60 

2). With the use of BINOL-derived phosphoric acid 5a, the 
rearrangement of epoxide 1a can occur at 40 ºC, but gave a 
racemic product. Several N-triflyl phosphoramides 5b-e with a 
stronger acidity were then synthesized in order to improve the 
reactivity and enantioselectivity. We were pleased to find that the 65 

complete rearrangement of epoxide 1a can be realized within 15 
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minutes to give the desired product with 26% ee under the 
catalysis of 10 mol % of phosphoramides 5d (Scheme 2). A 
controlled experiment with enantioenriched 1a (40% ee)9 as 
substrate also gave 26% ee, which suggests this reaction was 
controlled by catalysts instead of substrates. Prolonged the 5 

reaction time from 15 min to 8 h, no changes for the 
enantioselectivity were observed, which can partially exclude the 
racemization possibility for the generated chiral aldehydes under 
the reaction condition. Moreover, phosphoramide 5e containing a 
chiral spirobiindane scaffold10 can also promote this reaction with 10 

a relatively lower ee. 
The reaction condition was next optimized for the 

rearrangement of epoxide 1a under the catalysis of 
phosphoramides 5d and 5e. It was found that solvents had 
obvious impacts on the enantioselectivity (Table S1, Supporting 15 

Information). Although phosphoramide 5d was a better catalyst 
than 5e in toluene (Scheme 1), phosphoramide 5e was more 
sensitive for solvents. For example, CH2Cl2 gave a higher 
reactivity (>99% conv, 14% ee), but tetrahydrofuran (THF) gave 
a better ee value (21% conv, 32% ee). A mixture of THF and 20 

CH2Cl2 (1/1 in volume) as solvent was therefore tested for this 
transformation, and product 4a can be afforded in >99% conv 
with 54% ee (Scheme 1). When the amount of phosphoramide 5e 
was reduced to 5 mol %, the asymmetric H-shift of epoxide 1a 
can still proceed efficiently with only a slight loss of 25 

enantioselectivity (>99% conv, 48% ee) (Table S1, Supporting 
Information). 

Table 1 Chiral Brønsted Acid Catalyzed Rearrangement of Epoxidesa 

 

entry product 4 time (h) 
yield 

(%)b 

ee 

(%)c 

1d,e 4a: R = H 3 68 48 

2 4b: R = 4-F 5 65 33 

3 e, f 4c: R = 4-Cl 12 61 41 

4 f 4d: R = 4-Br 5 59 33 

5e 4e: R = 4-Me 4 62 33 

6 4f: R = 4-nBu 5 48 33 

7 4g: R = 4-iPr 5 59 35 

8 4h: R = 4-Ph 4.5 53 33 

9 f 4i: R = 3-F 18 67 38 

10 4j: R = 3-Me 5 67 35 

11 4k: R = 3-OMe 9 61 37 

12 4l: R = 3-Ph 5 65 42 

13g 4m: R = 2-Ph 3 74 19 

14 e, f 4n: R = H 12 68 20 

aAll reactions were carried out with epoxide 1 (0.40 mmol), 
phosphoramide 5e  (0.02 mmol), and THF/CH2Cl2 (v/v = 1/1) (1.0 mL) at 
-78 ºC until complete conversion of epoxide indicated by TLC. b Isolated 
yield for two steps. c The ee was determined by chiral HPLC. d The ee 
was determined by chiral GC. e The absolute configuration was assigned 
as R by comparing the optical rotation with the reported one. f The 
reaction was run at -60 ºC. g The reaction was run at -20 ºC. 

 30 

 

Subsequently, we examined the scope of epoxides for the 
asymmetric 1,2-rearrangement reaction with the use of 5.0 mol % 
of phosphoramide 5e as catalyst. As shown in Table 1, a variety 
of epoxides derived from substituted -methylstyrenes were well 35 

tolerated to give the desired products 4 in 48-74% yield11 with 
19-48% ee’s (entries 1-13). When using epoxide 1n derived from 
-ethylstyrene as substrate, the reaction can also proceed 
efficiently to give the desired product 4n in 68% yield with 20% 
ee (Table 1, entry 14).  40 

Since the 1,2-rearrangement of trisubstituted epoxides is a 
more challenging transformation,5g epoxide 6 has also been 
subjected as a substrate under the current condition. 
Disappointingly, no reaction was observed to occur. When 
increasing the temperature from -78 ºC to room temperature, 45 

allylic alcohol 7 was obtained in 84% yield instead of the 
expected aldehydes or ketones generated by either alkyl-shift or 
H-shift (Scheme 3).11  

 
Scheme 3. Brønsted Acid Catalyzed Reaction of Trisubstituted Epoxide 50 

 
 

Interestingly, a facile one-pot direct transformation of -
methylstyrene (8) to chiral alcohol was successfully realized to 
give the desired product 4a in 54% yield with 50% ee by 55 

sequential oxidation with m-CPBA, asymmetric 1,2-arrangement 
with chiral Brønsted acid 5e, and reduction with NaBH4 (Scheme 
4). 

 
Scheme 4. One Pot Synthesis of Chiral Alcohol from Alkene 60 

 

Conclusion 

In summary, a chiral Brønsted acid catalyzed asymmetric 1,2-
rearrangement of readily accessible racemic epoxides to chiral 
aldehydes has been successfully realized, followed by a further 65 

reduction, a variety of optically active alcohols can be obtained in 
moderate yield with up to 50% ee. Significantly, chiral alcohols 
can also be furnished by a one pot sequential transformation of 
alkenes via epoxidation, rearrangement, and reduction. Although 
the enantioselectivity and the substrate scope are still not 70 

satisfactory, this work represents the first example of catalyst-
controlled rearrangement of racemic epoxides and provides an 
alternative approach for the synthesis of chiral aldehydes from 
simple starting materials. 
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