Tetrahedron Letters 53 (2012) 3739-3741

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

New chiral phase-transfer catalysts possessing a 6,6'-bridged ring on the biphenyl unit: application to the synthesis of α , α -dialkyl- α -amino acids

Yasushi Kubota^a, Seiji Shirakawa^b, Tsutomu Inoue^a, Keiji Maruoka^{b,*}

^a Nippon Soda Co., Ltd, 345, Takada, Odawara, Kanagawa 250-0280, Japan

^b Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

ARTICLE INFO

Article history: Received 13 February 2012 Revised 7 April 2012 Accepted 27 April 2012 Available online 16 May 2012

Keywords: Phase-transfer catalysis Organocatalysis Amino acids Alkylations Asymmetric synthesis

ABSTRACT

A new chiral phase-transfer catalyst possessing a 6,6'-bridged ring on the biphenyl unit has been developed for the practical synthesis of α, α -dialkyl- α -amino acids. This catalyst shows very high activity for the asymmetric alkylation of an alanine derivative to give α, α -dialkyl- α -amino acid derivatives with high enantioselectivities.

© 2012 Elsevier Ltd. All rights reserved.

Phase-transfer catalysis (PTC) has been recognized as a powerful tool for organic synthesis because of its several advantages (i.e., simple procedure, mild reaction conditions with aqueous media and environmentally benign character, suitability for large-scale reactions, etc.), which meet the current requirements for practical organic synthesis.¹ Therefore, various types of chiral phase-transfer catalysts have been developed in recent years and the chiral efficiency of such phase-transfer catalysts was examined by application to the asymmetric synthesis of both natural and unnatural α -alkyl- and α , α -dialkyl- α -amino acids.² In spite of numerous studies, the search for truly efficient catalytic systems for the synthesis of α, α -dialkyl- α -amino acids is still in progress in terms of catalyst loading and reaction conditions.³ We recently developed highly efficient chiral phase-transfer catalysts for the synthesis of α -alkyl- α -amino acids.⁴ We were interested in the design of a finely tunable catalyst to improve the activity and enantioselectivity for the synthesis of α , α -dialkyl- α -amino acids. In the course of our research, the introduction of alkoxy groups to a biphenyl unit provided successful results in terms of both enantioselectivity and catalyst loading for the synthesis of α -alkyl- α -amino acids.^{4b} To further improve the catalyst activity and enantioselectivity, we were interested in the introduction of an alkyl chain bridge of variable length to link the biaryl groups.⁵ This new catalyst provides a rigid structure with an appropriate dihedral angle for each

E-mun dudress. maruoka@kuchem.kyoto-u.ac.jp (k. Maruoka).

substrate. Herein, we report that chiral phase-transfer catalyst of type **1**, possessing a bridged ring on the biphenyl unit, can be utilized as a practical tool for the asymmetric synthesis of α , α -dialkyl- α -amino acids.

The chiral biphenyl core unit was easily prepared as outlined in Scheme 1. Thus, *p*-bromination of commercially available 6-*tert*-butyl-*m*-cresol, followed by oxidative coupling gave the key biphenyl core **3** in good overall yield. Optical resolution of racemic **3** using (*R*,*R*)-1,2-diphenylethylenediamine as a chiral resolving agent was performed quite successfully (88%, >99% ee). Treatment of (*S*)-**3** with TfOH in toluene gave rise to (*S*)-5,5'-dibromo-6,6'-dimethylbiphenyl-2,2'-diol [(*S*)-**4**] in 94% yield.

Reaction of (*S*)-**4** with alkyl dihalides in the presence of excess anhydrous K_2CO_3 in CH₃CN gave compounds **5a**-**e** having C_1-C_5 bridges linking their biaryl groups (Scheme 2). A series of new phase-transfer catalysts **6a**-**e** were prepared from **5a**-**e** in a similar

^{*} Corresponding author. Tel./fax: +81 75 753 4041. E-mail address: maruoka@kuchem.kyoto-u.ac.jp (K. Maruoka).

^{0040-4039/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.04.127

Scheme 1. Reagents and conditions: (a) NBS (1 equiv), DMF, 92%; (b) CuCl (10 mol %), TMEDA (15 mol %), O₂ (air), CH₂Cl₂, 56%; (c) (*R*,*R*)-1,2-diphenylethylenediamine (0.6 equiv), toluene–hexane, 88%; (d) TfOH (1 equiv), toluene, 94%.

manner to the reported method.⁴ Thus, Suzuki–Miyaura cross coupling⁶ of (S)-**5a–e** with an arylboronic acid, ArB(OH)₂ [(Ar = 3,5-(CF₃)₂-C₆H₃)] in the presence of a catalytic amount of Pd(OAc)₂, PPh₃, and K₃PO₄ in DMF afforded the corresponding coupled products in good yields. Radical bromination of these resulting coupled products in benzene and subsequent treatment with Bu₂NH furnished (*S*)-**6a–e** in high yields.

To examine the bridging effect in the catalysts **6a–e**, we studied their application in the asymmetric benzylation of glycine Schiff base **7**. Thus, reaction of **7** with benzyl bromide (1.2 equiv) and 50% aqueous KOH in toluene was carried out in the presence of 1 mol % of (*S*)-**6a–e** at 25 °C to furnish benzylation product (*R*)-**8** (Scheme 3). Unexpectedly, there was no catalytic activity with (*S*)-**6a**. However, the enantioselectivity of benzylation product (*R*)-**8** slightly increased with extension of the bridging chain. Asymmetric alkylation of **7** in the presence of (*S*)-**6d** having a four-carbon bridge led to formation of (*R*)-**8** in an excellent 94% yield with 95% ee.

With these results in hand, we applied catalyst (*S*)-**6d** to the asymmetric alkylation of aldimine Schiff base **9** derived from $_{D,L}$ -alanine *tert*-butyl ester. Catalyst (*S*)-**6d** was found to be quite effective for the asymmetric quaternization⁷ of the aldimine Schiff base **9** of alanine *tert*-butyl ester. As shown in Scheme 4, (*S*)-**6d** and its analogue (*S*)-**11**⁴ exhibited high efficiency and selectivity even in the case of using KOH as the base at room temperature.^{8,9}

Prompted by this result, we examined the catalyst loading in order to optimize the catalytic system for the preparation of chiral

 α, α -dialkyl- α -amino acids. As shown in Table 1, (*S*)-**11** was found to be an extremely useful catalyst. Catalyst (*S*)-**11** was superior to (*S*)-**12** at 0.02 mol % loading and (*S*)-**13**, which is an excellent catalyst for the preparation of chiral α -alkyl- α -amino acids, ^{3f,4c} under low loading conditions (below 0.1 mol %).

Table 1

Effect of phase-transfer catalysts at low catalyst loading

Loading/Time	(S)- 11	(S)- 12	(S)- 13
1 mol % (2 h)	82%, 97% ee	82%, 97% ee	86%, 97% ee
0.5 mol % (2 h)	89%, 96% ee	83%, 97% ee	84%, 96% ee
0.1 mol % (20 h)	85%, 97% ee	85%, 97% ee	41%, 30% ee
0.1 mol % (60 h)	-	-	73%, 11% ee
0.02 mol % (20 h)	85%, 97% ee	82%, 94% ee	29%, 11% ee
0.01 mol % (40 h)	79%, 95% ee	71%, 73% ee	_

92

Table 2

Catalytic enantioselective phase-transfer alkylations of a lanine derivative ${\bf 9}$ catalyzed by (S)- ${\bf 11}^{\rm a}$

^a Unless otherwise specified, the reaction was carried out with 1.2 equiv of alkyl halide in the presence of phase-transfer catalyst (*S*)-**11** (0.02 mol %) in 50% aqueous KOH/toluene (volume ratio = 1:4) at 25 °C for 20 h.

66

^b Isolated yield.

5^{d,e}

^c Determined by HPLC analysis.

FtI

^d Use of 0.1 mol % of (S)-11.

^e Use of 5 equiv of alkyl halide.

We further applied catalyst (*S*)-**11** to the asymmetric synthesis of α , α -dialkyl- α -amino acids with various alkyl halides and representative results are listed in Table 2. A remarkable feature of the catalyst system is that the reaction proceeds under mild reaction conditions (KOH as base, room temperature) with extremely low catalyst loading (0.02 mol %).

The origin of the high reactivity of catalyst (S)-**11** in comparison with (S)-**13** is ascribed to the stability due to the lower acidity of the benzylic proton of (S)-**11**. By fixing the dihedral angle appropriately, the selectivity of (S)-**11** increases in contrast to the open-chain catalysts under the low loading conditions.

In conclusion, we have successfully designed very powerful chiral phase-transfer catalysts (*S*)-**6d** and (*S*)-**11** for the synthesis of α, α -dialkyl- α -amino acids. These new catalysts are effective for the practical synthesis of α, α -dialkyl- α -amino acids in terms of both high enantioselectivity with low catalyst loading under mild reaction conditions.

A typical experimental procedure is as follows: To a solution of alanine derivative **9** (0.25 mmol), alkyl halide (0.30 mmol), and catalyst (*S*)-**11** (0.00005 mmol, 0.02 mol%) in toluene (2.0 mL) was added 50% aqueous KOH (0.50 mL) at room temperature (25 °C). The reaction mixture was stirred vigorously at room

temperature (25 °C) for 20 h. The mixture was then poured into H_2O and extracted with CH_2Cl_2 . The solvents were evaporated, and the residue was dissolved in THF (5.0 mL). To this solution was added 1 N HCl (5.0 mL), and the mixture was stirred for 3 h at room temperature. After evaporation to remove THF, the aqueous phase was basified by the addition of solid NaHCO₃ and extracted with EtOAc. The organic extracts were dried over Na₂SO₄, and the solvent evaporated. The residue was dissolved in CH₂Cl₂ (3.0 mL), and to the solution was added benzoyl chloride (0.30 mmol). After stirring for 1 h at room temperature, aqueous NH₃ was added. The organic materials were extracted with CH₂Cl₂, and the organic extracts dried over Na₂SO₄. Evaporation of the solvent and purification of the residue by column chromatography on silica gel (EtOAc/hexane as eluent) gave the desired product **10**.

References and notes

- For reviews on phase-transfer catalysis, see: (a) Dehmlow, E. V.; Dehmlow, S. S. In *Phase Transfer Catalysis*, 3rd ed.; VCH: Weinheim, 1993; (b) Starks, C. M.; Liotta, C. L.; Halpern, M. In *Phase-Transfer Catalysis*; New York: Chapman & Hall, 1994; (c) *Handbook of Phase-Transfer Catalysis*; Sasson, Y., Neumann, R., Eds.; Blackie Academic & Professional: London, 1997; (d) Halpern, M. E., Ed.; Phase-Transfer Catalysis; ACS Symposium Series 659; American Chemical Society: Washington DC, 1997.
- For recent reviews on asymmetric phase-transfer catalysis, see: (a) O'Donnell, M. J. Aldrichim. Acta 2001, 34, 3; (b) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013; (c) O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506; (d) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518; (e) Vachon, J.; Lacour, J. Chimia 2006, 60, 266; (f) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222; (g) Ooi, T.; Maruoka, K. Aldrichim. Acta 2007, 40, 77; (h) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656; (i) Maruoka, K. Org. Process Res. Dev. 2008, 12, 679; (j) Jew, S.-s.; Park, H.-g. Chem. Commun. 2009, 7090; (k) Maruoka, K. Chem. Rec. 2010, 10, 254.
- For representative examples, see: (a) O'Donnell, M. J.; Wu, S. Tetrahedron: Asymmetry 1992, 3, 591; (b) Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron Lett. 1999, 40, 8671; (c) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228; (d) Jew, S.-s.; Jeong, B.-S.; Lee, J.-H.; Yoo, M.-S.; Lee, Y.-J.; Park, B.-s.; Kim, M. G.; Park, H.-g. J. Org. Chem. 2003, 68, 4514; (e) Ohshima, T.; Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron 2004, 60, 7743; (f) Kitamura, M.; Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 1549.
- (a) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139; (b) Wang, Y.-G.; Ueda, M.; Wang, X.; Han, Z.; Maruoka, K. Tetrahedron 2007, 63, 6042; (c) Kitamura, M.; Shirakawa, S.; Arimura, Y.; Wang, X.; Maruoka, K. Chem. Asian J. 2008, 3, 1702.
- For a similar approach for the design of chiral ligands, see: (a) Harada, T.; Ueda, S.; Tuyet, T. M. T.; Inoue, A.; Fujita, K.; Takeuchi, M.; Ogawa, N.; Oku, A.; Shiro, M. *Tetrahedron* 1997, 53, 16663; (b) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223.
- (a) Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457; (b) Suzuki, A. Angew. Chem., Int. Ed. **2011**, 50, 6723; (c) Suzuki, A.; Yamamoto, Y. Chem. Lett. **2011**, 40, 894.
- Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, K., Baro, A., Eds.; Wiley-VCH: Weinheim, 2005.
- 8. For the alkylation of the aldimine Schiff base **9** of alanine *tert*-butyl ester, CsOH (a relatively expensive base) was often used for the synthesis of α, α -dialkyl- α -amino acids. See Ref. 3.
- A 0.02 mol % loading of (S)-6d provided (R)-10 in lower selectivity (94% ee) compared with (S)-11 (97% ee) in Table 1.