

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine-Titanium Complex

Authors: Stephen Liddle, Laurence Doyle, Ashley Wooles, Lucy Jenkins, floriana tuna, and Eric McInnes

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201802576 Angew. Chem. 10.1002/ange.201802576

Link to VoR: http://dx.doi.org/10.1002/anie.201802576 http://dx.doi.org/10.1002/ange.201802576

WILEY-VCH

WILEY-VCH

Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine-Titanium Complex

Laurence R. Doyle,^[a] Ashley J. Wooles,^[a] Lucy C. Jenkins,^[b] Floriana Tuna,^[c] Eric J. L. McInnes,^[c] and Stephen T. Liddle^{*[a]}

Abstract: We report unprecedented catalytic reduction of N_2 to NH_3 by a molecular Ti complex, thus now adding an early d-block metal to the small group of mid- and late-d-block metals (Mo, Fe, Ru, Os, Co) that are capable of executing catalytic production of NH_3 by N_2 reduction and protonolysis under homogeneous, abiological conditions. Under Ar, reduction of $[Ti^{IV}(Tren^{TMS})X]$ (X = Cl, **1**A; I, **1B**; Tren^{TMS} $N(CH_2CH_2NSiMe_3)_3$ with 1 equivalent of KC₈ affords $[Ti^{III}(Tren^{TMS})]$ (2). Addition of N_2 to **2** affords $[\{(Tren^{TMS})Ti^{III}\}_2(\mu-\eta^1:\eta^1-N_2)]$ (3); further reduction with KC₈ then gives $[{(Tren^{TMS})Ti^{V}}_{2}(\mu-\eta^{1}:\eta^{2}:\eta^{2}:N_{2}K_{2})]$ (4). Addition of 4 equivalents of benzo-15-crown-5 ether (B15C5) to 4 affords $[{(Tren^{TMS})Ti^{IV}}_{2}(\mu-\eta^{I}:\eta^{I}-N_{2})][K(B15C5)_{2}]_{2}$ (5). Complexes 3-5, when treated under N₂ with excess KC₈ and [R₃PH][I], the latter utilising the weakest H^+ -sources yet used in N_2 reduction, produce up to 18 equivalents of NH_3 with only trace N_2H_4 . When only acid is present N_2H_4 is the dominant product, suggesting successive protonation eventually produces $[{(Tren^{TMS})Ti^{IV}}_2(\mu-\eta^1:\eta^1-N_2H_4)][I]_2$, with subsequent extrusion of N_2H_4 , that reacts further with $[R_3PH][I]/KC_8$ to form NH₃, and then concomitant reformation of **1B** closing the catalytic cycle.

The conversion of dinitrogen, N₂, into ammonia, NH₃, is essential for supplying N₂ in a fixed form into the Earth's biosphere,^[1] and key to providing NH₃ to chemical industry on a vast scale.^[2] However, the N≡N triple bond, with a bond strength of 944 kJ mol⁻¹, is one of the strongest chemical bonds known, and with a high ionisation potential, negative electron affinity, poor nucleophilicity and electrophilicity, large HOMO-LUMO gap, and no permanent dipole, there are major kinetic and thermodynamic barriers to activating N₂, and thus to fixing it as NH₃.^[3,4]

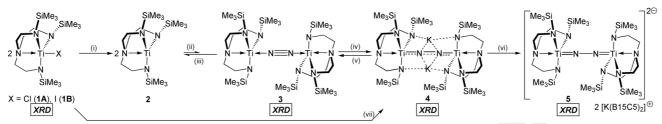
Nature uses homogeneous nitrogenases based on V, Mo, and Fe to execute multiple single-electron transfer and -protonation steps to convert N_2 to NH_3 .^[5] In contrast, chemical industry uses N_2 and H_2 to produce NH_3 over heterogeneous catalysts in Haber-Bosch processes.^[6] However, each process is energy intensive, reflecting the challenge of N_2 activation, and so there is interest in studying reactivity at molecular complexes to improve our understanding of these elementary transformations.^[7]

After the report that a Mo-triamidoamine complex catalytically reduces N_2 to NH_3 in the presence of $H^+/e^{-,[8]}$ a few Mo, Fe, Ru, Os, and Co complexes have been shown to be catalytically competent in H^+/e^- mediated N_2 reduction cycles,^[9] and stoichiometric reduction and protonation/hydrogenation of N_2 and nitrides by a variety of metals have

[a]	Dr L. R. Doyle, Dr A. J. Wooles, Prof. S. T. Liddle
	School of Chemistry
	The University of Manchester
	Oxford Road, Manchester, M13 9PL, UK
	E-mail: steve.liddle@manchester.ac.uk
[b]	Miss L. C. Jenkins
	School of Chemistry
	The University of Nottingham
	University Park, Nottingham, NG7 2RD, UK
[c]	Dr F. Tuna, Prof. E. J. L. McInnes
	School of Chemistry and Photon Science Institute
	The University of Manchester
	Oxford Road, Manchester, M13 9PL, UK
	Supporting information for this article is given via a link at the end document.

been reported.^[10] However, no abiological, early metal complex preceding group 6 has ever been shown to catalytically convert N₂ to NH₃, and even V-, Cr-, and W-triamidoamine complexes^[11] do not facilitate N₂ reduction/protonolysis to NH₃ like Mo analogues.^[8] Where Ti is concerned, cleavage of N₂ by molecular polyhydrides and low valent species and/or stoichiometric protonolysis has been reported.^[12] Recently, a heterogeneous Ti-hydride was found to catalytically convert N₂ and H₂ to NH₃ whilst TiO₂ is known to photolytically convert N₂ and H₂O to NH₃ and O₂.^[13] These reports hint that Ti could hold significant promise in this arena. This is appealing because Ti is the 9th most abundant element in the Earths crust, 2nd only to Fe for metals that can fix N₂.

Here, we report the first abiological, homogeneous Ti complex that is competent for catalytic reduction of N₂ to NH₃. We find that N₂ binding and partial activation occurs at Ti^{III} supported by one of the simplest triamidoamine ligands, priming the N₂ for cooperative reduction by KC₈. Protonation to give NH₃ in a catalytic cycle is facilitated by phosphonium salts that are the weakest proton source used in any catalytic system to date.


Under argon, reduction of yellow $[Ti^{IV}(Tren^{TMS})X] [X = Cl, 1A;^{[14]} I,$ $Tren^{TMS} = N(CH_2CH_2NSiMe_3)_3$ with KC₈ yields green 1B: $[Ti^{III}(Tren^{TMS})]$ (2).^[15] Three broad ¹H NMR resonances are observed (C₆D₆, 3.6, 1.0, and -22.3 ppm), whilst no ¹³C or ²⁹Si NMR resonances could be detected, and an EPR spectrum of 2 in frozen toluene-pentane exhibits g =1.984, 1.943, and 1.891. This is consistent with the presence of Ti^{III}, unfortunately 2 has resisted exhaustive attempts to isolate it. However, slow cooling of an N₂-saturated pentane solution of 2 yields red crystals of $[\{(Tren^{TMS})Ti^{III}\}_2(\mu-\eta^1:\eta^1-N_2)]$ (3), Scheme 1.^[15] In the solid state 3 has an effective magnetic moment of 2.50 µ_B at 298 K, which is close to the spinonly value for two $s = \frac{1}{2}$ species ($\mu_{eff} = 2.5 \beta_e$ for g = 2.0). The near temperature independence of μ_{eff} indicates that any Ti...Ti interaction is very weak.^[15] EPR spectra of solid **3**, give apparently axial $g_1 = 1.989$ and $g_{\parallel} = 1.940$ at room temperature, however on cooling these diverge to rhombic g = 1.993, 1.951, and 1.902 and are temperature independent below 100 K suggesting that molecular motion at higher temperatures gives higher effective symmetry. The magnetism and EPR spectra of 3 thus suggest the presence of Ti^{III} ions, and the structural and pectroscopic data, Table 1, are consistent with modest activation of the N≡N triple bond.^[16]

The formulation of **3** is corroborated by DFT calculations;^[15] all attempts to model a Ti^{IV}/Ti^{IV}/N₂²⁻ combination were intractable or produced the Ti^{III}/Ti^{III}/N₂ formulation. Computed Ti-NN and N-N Mayer bond orders of 0.56 and 2.38 are consistent with a weakly bound and activated N₂. This is also supported by computed Ti spin densities/charges of -0.55/0.99 and a total net spin density/charge of -0.9/-0.56 on the N₂-unit. The two SOMOs are orthogonal Ti \rightarrow N₂- π * back-bonding interactions.

The ¹H NMR spectrum of **3** (C₆D₆) reveals identical resonances to those of **2**, consistent with N₂ dissociation in solution. Complex **2** is similar to [Ti(Tren^{DMBS})] [Tren^{DMBS} = N(CH₂CH₂NSiMe₂Bu¹)₃],^[17] and their optical spectra exhibit broad absorptions at ~620 and ~640 nm, respectively,^[15] which is responsible for their green colours. In line with this, [Ti(Tren^{TMS})] exhibits computed HOMO to LUMO+3/+4 (d-d) energy separations of 655/657 nm.

of the

WILEY-VCH

Scheme 1. Synthesis of **2-5** from **1A/B**. Reagents and conditions: (i) Ar, $2 KC_8$, -2 KX, $-2 C_8$; (ii) N₂, cool; (iii) N₂, warm; (iv) $2 KC_8$; (v) I₂, -2 KI; (vi) 4 B15C5; (vii) N₂, 4 KC₈, -2 KX, $-2 C_8$.

Table 1. Key crystallographic bond lengths and Raman spectroscopic data for 3-5 and N_2H_x benchmarks (x = 0, 2, 4).^[15]

Compound	v(N ₂), cm ⁻¹ exp(¹⁴ N/ ¹⁵ N);calc	d(N-N) (Å)	d(Ti–NN) (Å)	∠(Ti-N- N) (°)
N_2	2330	1.098(1)	-	-
N_2H_2	1583,1529	1.25	-	-
N_2H_4	1076	1.45	-	-
3	1701/1644;1724	1.121(6)	2.022(3)	180
4	1201/1164;1247	1.315(3)	1.814(2)	166.6(2)
			1.810(2)	172.9(2)
5	1246/1203;1307	1.461(7)	1.712(4)	178.8(5)

Addition of two or four equivalents of KC₈ to **3** or **1A**, respectively, under N₂ affords red-brown [{(Tren^{TMS})Ti^{IV}}₂(μ - η ¹: η ¹. η ²: η ²-N₂K₂)] (**4**), Scheme 1.^[15] The structure of **4**, Table 1, shows the N₂ ligand is bound in a near-linear manner. The N-N bond distance is extended compared to **3** and free-N₂ and the Ti-NN bond distances are short, inferring some Ti-imido character. These data along with Raman spectroscopy suggest strong activation of N₂. Multi-nuclear NMR spectra of C₆D₆ solutions of **4** and **4**-¹⁵N₂ are consistent with a C₃-symmetric Ti^{IV}/Ti^{IV}/N₂⁴⁻ formulation.

Only a closed-shell formulation for **4** gave a converged DFT calculation,^[15] where the Ti ions and N₂-unit carry computed charges of 0.52 (av.) and -1.1 (total), respectively; this implies a covalent bonding picture for the Ti-(μ -N₂)-Ti unit that is supported by Ti-NN and N-N Mayer bond orders of 1.25 and 1.44, respectively. For comparison, the Ti-N_{amide} and Ti-N_{amine} Mayer bond orders are ~0.7 and 0.25, respectively. The HOMO and HOMO-1 are two orthogonal, doubly-occupied Ti \rightarrow N₂- π * back-bonding interactions. The K¹ ions clearly play a stabilising role, but this is electrostatic, with K-N Mayer bond orders of <0.05.

Addition of 4 equivalents of benzo-15-crown-5 (B15C5), Scheme 1, gives red [{(Tren^{TMS})Ti^{IV}}₂(μ - η^1 : η^1 -N₂)][K(B15C5)₂]₂ (**5**).^[15] The solid state molecular structure of **5**, Table 1, reveals that the Ti-N-N-Ti axis is closer to linearity than in **4**. The N-N and Ti-NN bond distances in **5** are longer and shorter, respectively, suggesting strong N₂ activation and significant Tiimido character. However, for **5** the ν (N₂) Raman stretch, a better indicator of N₂ activation than bond distances, suggests reduced N₂ activation compared to **4**, Table 1. UV/Vis spectra of **4** and **5** are essentially identical in THF, but different in benzene, suggesting that the K¹ ions in **4** are labile in polar donor solvent, but remain coordinated in non-polar solvents.

Only a closed-shell formulation for the dianion part of **5** gave a converged calculation. The Ti-NN and N-N Mayer bond orders in **5** are 1.33 and 1.62, which are larger than the corresponding data for **4**; the latter is in-line with the Raman data, whilst the former suggests that more Tiimido character results from removal of K^1 ions. The fact that **5** contains a charge-rich dianion is reflected by Ti-N_{amide} and Ti-N_{amine} Mayer bond orders that are lower than in 4 at ~0.6 and 0.16, respectively. This is consistent with computed Ti charges of 0.99 in 5 that are higher than those in 4, but the N_2 -unit is less charged at -0.86 overall.

Having established N₂ reduction, attention turned to fixation, Table 2. Treatment of **4** (10 mM, pentane) with ethereal 1M HCl (10 equivalents) yielded 0.88 N₂H₄ and 0.13 NH₃ equivalents (Entry 1). The near stoichiometric yield of N₂H₄ confirms **4** as a hydrazido complex. In a control, when **1A** is identically quenched only 0.04 NH₃ equivalents were detected. This suggests that the small amount of NH₃ produced is the result of minor degradation of Tren^{TMS} under the action of very strong acid.

To achieve catalytic turnover of N₂, it was concluded that a milder acid than ethereal HCl $[pK_a (Et_2O \cdot H)^+ = -3.59]$ would be required. Also, the synthesis of 4 requires strong K-based reductants, which react rapidly with strong, soluble acids. Confirming this, using HCl/KC₈ (30:30:4) resulted in a sub-stoichiometric yield of N₂H₄ and NH₃ (0.13 and 0.36 equivalents, respectively). It was anticipated that a weaker acid could be effective for the protonation of activated N₂ whilst minimising deleterious side-reactions. However, commonly used *N*-based acids, such as lutidinium [2,6-(CH₃)₂C₃H₃NH]⁺ and aryl/alkyl-ammonium salts were found to be susceptible to reduction by KC₈, and in some controls led to NH₃ formation; as such, we anticipated false-positive results. Thus, more stable, non-*N*-based acids were sought.

Trialkylphosphonium salts, [R₃PH][X], were examined due to their mild acidity ($pK_a \sim 8-12$) and tunable nature. Initial experiments were conducted with [Cy₃PH][I] ($pK_a = 9.7$). Addition to **4** (10:1 ratio) in Et₂O produced 0.5 N₂H₄ and 0.05 NH₃ equivalents (Entry 2). This is a lower yield of N₂H₄ compared to using HCl, but [Cy₃PH][I] is a weaker, less soluble acid so it was expected to be less reactive. However, with excess [Cy₃PH][I]/KC₈, **4** catalyses the production of up to 18 equivalents of NH₃ per **4** (Entries 3-11). Using **4**-¹⁵N₂ under ¹⁵N₂ confirmed the incorporation of ¹⁵N₂ into the ¹⁵NH₃/¹⁵NH₄Cl product.

A sub-stoichiometric yield was obtained using $[K_2(C_{10}H_8)_2(THF)]$ as the reductant (Entry 12), likely due to its solubility in Et₂O and thus greater propensity to react with H⁺ *in-situ*, consuming acid and reductant for H₂ production. Comparative runs in ethers (Et₂O and THF), in which intermediates may be solvated/stabilised, gave higher yields than those in toluene or pentane (Entries 4 and 9-11). The acid anion was also varied: $[Cy_3PH][Cl]$ (Cl⁻, higher coordinating ability) or $[Cy_3PH][BAr^F_4]$ (BAr^F₄⁻ = $[{}_{3,5-(CF_3)_2C_6H_3}{}_{4B}]^-$, non-coordinating) (Entries 4 and 13-14). For both this resulted in lower yields of NH₃, but supposed variation of a single parameter will simultaneously affect several properties that all influence catalytic turnover, preventing meaningful correlation. Similar catalytic turnovers were obtained using $[Bu^n_3PH][I]$ and $[Bu^t_3PH][I]$ (p $K_a = 8.4$ and 11.4, respectively; Entries 15 and 16), or using a 4:3 ratio of $[Cy_3PH][I]$ to KC₈ (Entry 5), which accounts for an additional equivalent of acid being consumed through protonation of NH₃.

WILEY-VCH

Entry ^a	Solvent	Acid	Reductant	Acid		NH ₃ (eq.)	N_2H_4	Fixed-N ^g (eq.)	Efficiency ^h (%)
				(eq.)			(eq.)		
1	pentane	1M HCl	-	10	-	0.13	0.88	1.89	-
2	Et ₂ O	[Cy ₃ PH][I]	-	10	-	0.05	0.52	1.09	-
3	Et_2O	[Cy ₃ PH][I]	KC_8	120	120	6.41	0.15	6.71	17
4	Et_2O	[Cy ₃ PH][I]	KC_8	300	300	11.91	0.06	12.03	12
5	Et_2O	[Cy ₃ PH][I]	KC_8	400	300	10.81	0.10	11.01	11
6	Et_2O	[Cy ₃ PH][I]	KC_8	600	600	17.77/17.4 ^f	0.03	17.83	9
7 ^{b,c}	Et_2O	[Cy ₃ PH][I]	KC_8	600	600	17.70/17.6 ^f	0.08	17.86	9
8 ^{b,d}	Et_2O	[Cy ₃ PH][I]	KC_8	300	300	1.53	0	1.53	-
9	pentane	[Cy ₃ PH][I]	KC_8	300	300	5.82	0.29	6.40	6
10	toluene	[Cy ₃ PH][I]	KC_8	300	300	3.89	0.21	4.31	4
11	THF	[Cy ₃ PH][I]	KC_8	300	300	8.95	0	8.95	9
12	Et_2O	[Cy ₃ PH][I]	K(Nap)(THF)	300	300	0.36	0.07	0.50	0
13	Et_2O	[Cy ₃ PH][Cl]	KC ₈	300	300	2.45	0.05	2.55	3
14	Et_2O	[Cy ₃ PH][BAr ^F ₄]	KC_8	300	300	4.77	0	4.77	5
15	Et_2O	[ⁿ Bu ₃ PH][I]	KC_8	300	300	11.73	0.09	11.91	12
16	Et_2O	[^t Bu ₃ PH][I]	KC_8	300	300	7.37	0.30	7.97	8
17 ^e	Et_2O	[Cy ₃ PH][I]	KC_8	25	25	1.32	0.34	2.00	-

[†] Diazene (N₂H₂) was not analysed for due to its expected instability under these reaction conditions, however, complete disproportionation of N₂H₂ to N₂H₄ and N₂ can only be expected to produce a maximum N₂H₄ yield of 50%. ^a All experiments were performed under N₂ (unless otherwise noted) at -78 °C (2 h), followed by gradual warming to 25°C and additional stirring for 15 h. ^b 4-¹⁵N₂, ^c under ¹⁵N₂, ^d under Ar; ^e[N₂H₅][I]; ^f yield calculated from ¹H NMR; ^a Fixed-N (eq.) = [NH₃ (eq.)] + 2[N₂H₄ (eq.)]; ^b Efficiency = 100%[Red. (eq.)]/{3[NH₃ (eq.)] + 4[N₂H₄ (eq.)]}.

With KC₈ the major product is NH₃, with little N₂H₄ (< 0.15 per **4**) detected. That **4** does not react further with KC₈ in Et₂O implicates an initial protonation step rather than further reduction of **4** to form a Ti^{IV}-nitride species, which could be responsible for NH₃ production. A further control demonstrated that [N₂H₃][I] is converted to NH₃ in the absence of **4**/**4**-¹⁵N₂ (Entry 17), and with Entry 1, this suggests that the N₂H₄ to NH₃ reduction/protonation may occur after dissociation from the active species. We cannot rule out the presence of transient Ti^{IV}-nitrides,^[18] but these control experiments suggest that successive protonation may produce "[{(Tren^{TMS})Ti^{IV}}₂(µ-η¹:η¹-N₂H₄)][I]₂", with subsequent extrusion of N₂H₄, that reacts with [Cy₃PH][I]/KC₈ to form NH₃; concomitant formation of **1B** closes the catalytic cycle.

Under Entry 4 conditions, **5** is catalytically competent producing 10 equivalents of NH₃. Complex **3** produces 6 equivalents of NH₃ under such conditions, showing catalytic competence, but on dissolution a significant proportion of **3** converts to **2**, Scheme 1, retarding reactivity. In isolation, **3** reacts with acid to produce 0.03 and 0.1 equivalents of NH₃ and N₂H₄, respectively, underscoring the importance of KC₈ activation of the coordinated N₂ in **3**.

The reactivity of **5** is significant, because it is a clear-cut end-on:endon bridging N₂ complex. To date, almost all N₂-fixing catalysts contain end-on terminal N₂,^[7] whereas those with end-on:end-on bridging N₂ have been proposed to dissociate to form end-on terminal complexes, or undergo N₂ cleavage to generate nitrides.^[7,9b,d,18-20] Side-on:side-on bridging, which usually results in strong N₂ activation, has been reported for stoichiometric N₂ activation only. Conversion of end-on:end-on bridging to side-on:sideon bridging in **5** seems unlikely on steric grounds, so the reactivity of **5** suggests that consideration might be given to recognising end-on:end-on bridging as a catalytically competent N₂ coordination mode. If this is the case, it would provide an unusual symmetrical functionalisation of N₂ to N₂H₄ (in the absence of reductant to cleave the N-N bond) compared to the traditional Chatt-type cycle,^[21] since only one molecular Fe complex is known to be selective for catalytic reduction of N₂ to N₂H₄ rather than NH₃.^[22]

To conclude, we have reported the first abiological early base metal complex that is competent for the homogeneous catalytic reduction of N_2 to NH_3 under ambient conditions, and this chemistry is supported by the simple Tren^{TMS} ligand. The proton sources in this catalysis, $[R_3PH][I]$, are the weakest yet used in N_2 reduction to NH_3 , underscoring the importance of balancing acid sources to strong reducing agents. We propose a plausible

mechanism, where Ti^{IV} is reduced to Ti^{III}, which binds and weakly activates N₂, priming it for cooperative K-mediated reduction^[10e,23] to a strongly activated state, which can then be protonated. Transient nitrides cannot be ruled out at this point, but control experiments suggest that N₂H₄ is formed and then converted to NH₃ in the presence of acid and reductant. The catalytic activity of one of the Ti complexes suggests that the end-on:end-on bridging mode of N₂ should possibly no longer be discounted as a catalytically active coordination mode. These results add Ti to the small number of previously exclusively mid- and late-d-block metal ions (Mo, Fe, Ru, Os, Co) that can execute catalytic reduction of N₂ to NH₃.

Acknowledgements

We gratefully acknowledge the UK EPSRC (grants EP/M027015/1 and EP/P001386/1), ERC (grant CoG612724), Royal Society (grant UF110005), and The University of Manchester for generous funding and support, and the National EPSRC UK EPR Facility. Metrical parameters for the structures of compounds **1A**, **1B**, and **3-5** are available free of charge from the CCDC (1812642 to 1812646). All other data are available from the authors on request

Keywords: Dinitrogen reduction • Titanium • Ammonia • Nitrogen fixation • Phosphonium salt

- [1] K. C. MacLeod, P. L. Holland, Nat. Chem. 2013, 5, 559.
- [2] Y. Nishibayashi, Inorg. Chem. 2015, 54, 9234.
- [3] M. D. Fryzuk, S. A. Johnson, *Coord. Chem. Rev.* **2000**, *200-202*, 379-409.
- [4] M. D. Fryzuk, J. B. Love, S. T. Rettig, V. G. Young, Science 1997, 275, 1445.
- [5] B. M. Hoffman, D. Lukoyanov, Z. -Y. Yang, D. R. Dean, L. C. Seefeldt, *Chem. Rev.* 2014, 114, 4041.
- [6] M. Hölscher, W. Leitner, Chem. Eur. J. 2017, 23, 11992.
- [7] R. J. Burford, M. D. Fryzuk, Nat. Rev. Chem. 2017, 1, 0026.
- [8] D. V. Yandulov, R. R. Schrock, Science 2003, 301, 76.
- [9] a) J. Fajardo Jr, J. C. Peters, J. Am. Chem. Soc. 2017, 139, 16105; b) A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2017, 8, 14874; c) S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 14291; d) S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2016, 7, 12181; e) J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84;

f) K. Arashiba, Y. Miyake, Y. Nishibayashi, *Nat. Chem.* **2011**, *3*, 120; g) R. R. Schrock, *Angew. Chem. Int. Ed.* **2008**, *47*, 5512.

- [10] a) A. J. Kendall, S. I. Johnson, R. M. Bullock, M. T. Mock, J. Am. Chem. Soc. 2018, 140, 2528; b) M. Falcone, L. Chatelain, R. Scopelliti, I. Zivkovic, M. Mazzanti, Nature 2017, 547, 332; c) F. S. Schendzielorz, M. Finger, C. Volkmann, C. Würtele, S. Schneider, Angew. Chem. Int. Ed. 2016, 55, 11417; d) D. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Science 2012, 337, 717; e) M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, Science 2011, 334, 780; f) B. Askevold, J. T. Nieto, S. Tussupbayev, M. Diefenbach, E. Herdtweck, M. C. Holthausen, S. Schneider, Nat. Chem. 2011, 3, 532; g) J. J. Scepaniak, C. S. Vogel, M. M. Khusniyarov, F. W. Heinemann, K. Meyer, J. M. Smith, Science 2011, 331, 1049; h) S. D. Brown, M. P. Mehn, J. C. Peters, J. Am. Chem. Soc. 2005, 127, 13146; i) J. A. Pool, E. Lobkovsky, P. J. Chirik, Nature 2004, 427, 527.
- a) N. C. Smythe, R. R. Schrock, P. Müller, W. W. Weare, *Inorg. Chem.* 2006, 45, 9197; b) N. C. Smythe, R. R. Schrock, P. Müller, W. W. Weare, *Inorg. Chem.* 2006, 45, 7111; c) D. V. Yandulov, R. R. Schrock, *Can. J. Chem.* 2005, 83, 341.
- [12] a) Y. Nakanishi, Y. Ishida, H. Kawaguchi, Angew. Chem. Int. Ed. 2017, 56, 9193; b) B. Wang, G. Luo, M. Nishiura, S. Hu, T. Shima, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2017, 139, 1818; c) M. González-Moreiras, M. Mena, A. Pérez-Redondo, C. Yélamos, Chem. Eur. J. 2017, 23, 3558; d) R. J. Burford, A. Yeo, M. D. Fryzuk, Coord. Chem. Rev. 2016, 334, 84; e) T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, Z. Hou, Science 2013, 340, 1549; f) G. B. Nikiforov, I. Vidyaratne, S. Gambarotta, I. Korobkov, Angew. Chem. Int. Ed. 2009, 48, 7415; g) T. E. Hanna, E. Lobkovsky, P. J. Chirik, Organometallics 2009, 28, 4079; h) T. E. Hanna, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2006, 128, 6018; i) T. E. Hanna, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 14688; j) G. Bai, P. Wei, D. W. Stephan, Organometallics 2006, 25, 2649; k) F. Studt, N. Lehnert, B. E. Wiesler, A. Scherer, R. Beckhaus, F. Tuczek, Eur. J. Inorg. Chem. 2006, 291; I) A. Scherer, K. Kollak, A. Lützen, M. Friedemann, D. Haase, W. Saak, R. Beckhaus, Eur. J. Inorg. Chem. 2005, 1003; m) L. Morello, P. Yu, C. D. Carmichael, B. O. Patrick, M. D. Fryzuk, J. Am. Chem. Soc. 2005, 127, 12796; n) S. M. Mullins, A. P. Duncan, R. G. Bergman, J. Arnold, Inorg. Chem. 2001, 40, 6952; o) R. Baumann, R. Stumpf,

W. M. Davis, L. -C. Liang, R. R. Schrock, J. Am. Chem. Soc. 1999, 121, 7822;
p) T. A. Bazhenova, A. E. Shilov, Coord. Chem. Rev. 1995, 144, 69; q) R. Duchateau, S. Gambarotta, N. Beydoun, C. Bensimon, J. Am. Chem. Soc. 1991, 113, 8986; r) P. Maksimowski, W. Skupiński, J. Mo. Catal. 1991, 68, 371; s) E. E. van Tamelen, R. B. Fechter, S. W. Schneller, G. Boche, R. H. Greeley, B. Akermark, J. Am. Chem. Soc. 1969, 61, 1551; t) M. E. Vol'pin, V. B. Shur, Nature 1966, 209, 1236.

- [13] a) Y. Kobayashi, Y. Tang, T. Kageyama, H. Yamashita, N. Masuda, S. Hosokawa, H. Kageyama, J. Am. Chem. Soc. 2017, 139, 18240; b) H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929; c) G. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc. 1977, 99, 7189.
- [14] C. C. Cummins, R. R. Schrock, W. M. Davis, Organometallics 1992, 11, 1452-1454.
- [15] See the Supporting Information for full details.
- [16] F. Studt, F. Tuczek, J. Comput. Chem. 2006, 27, 1278.
 [17] C. C. Cummins, J. Lee, R. R. Schrock, W. D. Davis, Angew. Chem. Int. Ed.
- 1992, 31, 1501.
 [18] a) G. K. B. Clentsmith, V. M. E. Bates, P. B. Hitchcock, F. G. N. Cloke, J. Am. Chem. Soc. 1999, 121, 10444; b) C. E. Laplaza, C. C. Cummins, Science 1995, 268, 861.
- [19] a) T. M. Buscagan, P. H. Oyala, J. C. Peters, Angew. Chem. Int. Ed. 2017, 56, 6921; b) I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2015, 137, 3498; c) D. Pun, C. A. Bradley, E. Lobkovsky, I. Keresztes, P. J. Chirik, J. Am. Chem. Soc. 2008, 130, 14046.
- [20] K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, Y. Nishibayashi. Bull. Chem. Soc. Jpn. 2017, 90, 1111.
- [21] J. Chatt, A. J. Pearman, R. L. Richards, *Nature* 1975, 253, 39.
- [22] P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers, A. E. Ashley, J. Am. Chem. Soc. 2016, 138, 13521.
- G. Ung, J. C. Peters, Angew. Chem. Int. Ed. 2015, 54, 532; K. Grubel, W. W.
 Brennessel, B. Q. Mercado, P. L. Holland, J. Am. Chem. Soc. 2014, 136, 16807; c) K. P. Chiang, S. M. Bellows, W. W. Brennessel, P. L. Holland, Chem. Sci. 2014, 5, 267.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

Laurence R. Doyle, Ashley J. Wooles, Lucy C. Jenkins, Floriana Tuna, Eric J. L. McInnes, and Stephen T. Liddle [Ti] N₂ (1 bar) + xs [R₃PH][X] + xs KC₈ → up to 18 NH₃ Me₃ iMe₃ Page No. – Page No. N₂ $Ti^{III} \leftarrow N \equiv N \rightarrow Ti^{III} - \frac{2 \text{ KC}_8}{2 \text{ KC}_8}$ 4 crown Ti^{IV}=N−N=Ti^{IV}²⁻ N---- Ti^{IV} **Catalytic Dinitrogen Reduction to** 2 Ammonia at a Triamidoamine-N₂ reduction by K/Ti strong end-on:end-on N2 activation N₂ binding at Ti^{ll} iMe **Titanium Complex**