CHE-9023294 from the National Science Foundation and a Fulbright Fellowship to R.H.S.

#### **References and Notes**

- (1) Part 78 in the series: Systematic Design of Chemical Oscillators. Part
- 77: Rábai, G.; Orbán, M.; Epstein, I. R. J. Phys. Chem. 1992, 96, 5414. (2) De Kepper, P.; Epstein, I. R.; Kustin, K. J. Am. Chem. Soc. 1981, 103,
- 2133 (3) Orbán, M.; Dateo, C.; De Kepper, P.; Epstein, I. R. J. Am. Chem. Soc.
- 1982, 104, 5911. (4) Alamgir, M.; Epstein, I. R. J. Phys. Chem. 1985, 89, 3611.
- (5) Dateo, C.; Orbán, M.; De Kepper, P.; Epstein, I. R. J. Am. Chem. Soc. 1982, 104, 504.
- (6) Khan, A. B.; Higginson, W. C. E. J. Chem. Soc., Dalton Trans. 1981, 2537
  - (7) Orbán, M.; De Kepper, P.; Epstein, I. R. J. Phys. Chem. 1982, 86, 431.
    (8) Nagypál, I.; Epstein, I. R. J. Phys. Chem. 1986, 90, 6285.

  - (9) Orban, M.; Epstein, I. R. J. Phys. Chem. 1982, 86, 3907.
- (10) Simoyi, R. H.; Masere, J.; Mutimbaranda, C.; Manyonda, M.; Dube,
- S. Int. J. Chem. Kinet. 1991, 23, 419. (11) Nagypál, I.; Bazsa, G.; Epstein, I. R. J. Am. Chem. Soc. 1986, 108, 3635
- (12) Simoyi, R. H.; Manyonda, M.; Masere, J.; Mtambo, M.; Ncube, I.;

- Patel, H.; Epstein, I. R.; Kustin, K. J. Phys. Chem. 1991, 95, 770.
- (13) Capozzi, G.; Modena, G. The Chemistry of the Thiol Group, Part
  2; Wiley & Sons: New York, 1974; pp 785-839.
  (14) Simoyi, R. H.; Noyes, R. M. J. Phys. Chem. 1987, 91, 2689.
  (15) Alamgir, M.; Epstein, I. R. Int. J. Chem. Kinet. 1985, 17, 429.
  (16) Simoyi, R. H. J. Phys. Chem. 1985, 89, 3570.

  - (17) Lengyel, I.; Rábai, Gy.; Epstein, I. R. J. Am. Chem. Soc. 1990, 112,
- 904
  - (18) Davies, C. W. J. Chem. Soc. 1938, 2093.
    (19) Bishop, E., Ed. Indicators; Pergamon Press: New York, 1972; p 195.

  - (20) Feil, D.; Loong, W. S. Acta Crystallogr., Sect. B 1968, B24, 1334.11.
     (21) Eigen, M.; Kustin, K. J. Am. Chem. Soc. 1962, 84, 1355.
  - (22) Peintler, G.; Nagypál, I.; Epstein, I. R. J. Phys. Chem. 1990, 94, 2954.
  - (23) Kieffer, R. G.; Gordon, G. Inorg. Chem. 1968, 7, 239
  - (24) Rábai, Gy.; Beck, M. T. J. Chem. Soc., Dalton Trans. 1985, 1669.
  - (25) Kaps, P.; Rentrop, P. Numer. Math. 1979, 23, 55.
- (26) Szirovicza, L.; Nagypál, I.; Boga, E. J. Am. Chem. Soc. 1989, 111, 2842
- (27) Resch, P.; Field, R. J.; Schneider, F. W.; Burger, M. J. Phys. Chem. 1989, 93, 8186.
  - (28) Rábai, Gy.; Orbán, M.; Epstein, I. R. J. Phys. Chem. 1992, 96, 5414.
     (29) Zhang, Y.-X.; Field, R. J. J. Phys. Chem., submitted for publication.

  - (30) Simoyi, R. H.; Epstein, I. R.; Kustin, K. J. Phys. Chem., in press.
  - (31) Simoyi, R. H.; Epstein, I. R.; Kustin, K. Manuscript in preparation.

# Relaxation Kinetics and Infrared Spectra of the Complexation of Lithium Ion by Triethylene Glycol and by Tetraethylene Glycol in Acetonitrile

Daryl P. Cobranchi, Ben A. Garland, Marilyn C. Masiker, Edward M. Eyring,\*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

#### Paul Firman, and Sergio Petrucci

Weber Research Institute, Polytechnic University, Long Island Center, Route 110, Farmingdale, New York 11735 (Received: January 6, 1992; In Final Form: March 31, 1992)

Ultrasonic absorption relaxation spectra are reported covering the frequency range  $\sim 1-500$  MHz for the complexation of LiClO<sub>4</sub> by the open-chain polyethers triethylene glycol (EG3) and tetraethylene glycol (EG4) in acetonitrile at 25 °C and at a molar ratio  $R = [EG3]/[LiClO_4]$  or  $R = [EG4]/[LiClO_4] = 1$ . The ultrasonic spectra can be described by the sum of two Debye relaxation processes which were interpreted according to the Eigen-Winkler mechanism

$$Li^+ + EG \xleftarrow{k_0} Li^+ \dots EG \xleftarrow{k_1} Li^+ EG \xleftarrow{k_2} (Li^+ EG)$$

(where EG denotes either EG3 or EG4), giving the rate constants  $k_1$ ,  $k_{-1}$ ,  $k_2$ , and  $k_{-2}$ . The first step is taken to be a preequilibration step for which  $K_0$  is calculated from classical statistical theory. The rate constants are compared with those of the corresponding process involving triglyme and poly(ethylene oxide) (PEO) previously reported. Infrared data for the 3800-3200-cm<sup>-1</sup> region show a shift of 70 cm<sup>-1</sup> to lower energy, indicating a strong interaction between the ethanolic oxygen of EG3 and the Li<sup>+</sup> ion.

## Introduction

The kinetics and mechanism of Li<sup>+</sup> complexation are of interest in part because of biochemical<sup>1</sup> and electrochemical ramifications.<sup>2</sup> In a recent study of complexation of Li<sup>+</sup> by poly(ethylene oxide) (PEO) of average molar mass  $\overline{M} \sim 15000$  and by triglyme (TG3) with M = 178 amu, Eschmann et al.<sup>3</sup> observed two concentration-dependent relaxation processes which, at the molar ratio R=  $\left[-O(CH_2)_2 - \right] / \left[LiClO_4\right]$  = 4, were independent of molecular chain length. Since PEO has terminal hydroxyl groups for each chain, whereas TG3 is "capped" by methoxy (-OCH<sub>3</sub>) terminal groups, it is interesting to see whether by shortening the chain length of PEO down to a size comparable to that of TG3, a large difference in the complexation behavior of Li<sup>+</sup> with the polyether is observed.

Thus we here extend the study of Li<sup>+</sup> complexation to ligands such as triethylene glycol (EG3) and tetraethylene glycol (EG4). They differ from TG3 by the replacement of the terminal methyl groups by hydrogen atoms for both ligands as well as by the addition of one -CH<sub>2</sub>CH<sub>2</sub>O- group in the case of EG4; see Figure 1. The interaction of the hydroxyl group with Li<sup>+</sup> has been documented by infrared (IR) spectra in the 3800-3200-cm<sup>-1</sup> region as reported below. Acetonitrile was used as the solvent for all the systems investigated as in the previous work with TG3 and PEO.<sup>3</sup>

### **Experimental Section**

Two different cylindrical resonators were used by our two research groups independently in the frequency range 1-7 MHz,<sup>4</sup> yielding identical results within experimental error  $(\pm 1\%)$ .

For the 15-215-MHz frequency range a previously described<sup>5</sup> laser Debye-Sears instrument was used. The 30-600-MHz frequency range was also studied with a pulse ultrasonic absorption apparatus.<sup>6</sup> These two methods also yielded comparable results within experimental error.

A 983G computer assisted Perkin-Elmer infrared spectrometer was used to collect the digitized infrared spectra. The Perkin-Elmer sealed demountable cells equipped with NaCl windows were calibrated before each run by the fringe method. The instrument was set in the single-scan, slow-speed mode (filter no. 4), with no smoothing, to avoid distortion of the spectral envelope. The



Figure 1. Formulas of triethylene glycol (EG3), triglyme (TG3), and tetraethylene glycol (EG4).

assisting computer records the digitized spectra in transmittance and converts them to digitized absorbances.

Anhydrous LiClO<sub>4</sub> (Aesar or Aldrich) was dried at  $\sim 100$  °C in vacuo for several days until constancy of weight was obtained. LiAsF<sub>6</sub> and LiSO<sub>3</sub>CF<sub>3</sub> were also dried in vacuo at 70  $^{\circ}$ C.

Triethylene glycol (Aldrich) and tetraethylene glycol (Aldrich) were dried over activated 4A molecular sieves and then vacuum distilled. Acetonitrile (either E. M. Science Spectroscopic grade or Aldrich Gold Label) was refluxed for a day over  $P_4O_{10}$  and then distilled. All solutions were prepared and used with minimal contact (<20 s) with the atmosphere.

#### Results

Infrared data show a dramatic shift in the -OH stretching region (~3500 cm<sup>-1</sup>) when LiClO<sub>4</sub> is added to a solution of EG3 or of EG4 in CH<sub>3</sub>CN, thus indicating an interaction between the oxygen of the -OH group and Li<sup>+</sup>. Figure 2 presents plots of the digitized IR spectra showing this shift.

Unfortunately, the spectra in the relevant 800-950-cm<sup>-1</sup> region related to the coil breathing of the polyether<sup>7</sup> appear for the ethylene glycols to be too complicated for an unambiguous analysis by Gaussian-Lorentzian functions and assignment of the absorbance bands. Nevertheless, this region does show an interaction between Li<sup>+</sup> and the ethereal oxygens.

Figure 3 (parts A and B) shows representative plots of the excess sound absorption data per wavelength  $\alpha_{\rm exc} \lambda = \mu = (\alpha - Bf^2)u/f$ vs the frequency f.  $\alpha$  is the total absorption coefficient, and  $Bf^2$ is the absorption coefficient at a frequency f far above the relaxation frequencies  $f_{\rm I}$  and  $f_{\rm II}$ .  $B = (\alpha/f^2)_{f \gg f_{\rm I} f_{\rm II}}$  is the corresponding background ratio,  $\lambda = u/f$  is the acoustical wavelength, and u is the sound velocity. The data are interpreted by the sum of two Debye<sup>8</sup> relaxation processes:

$$\mu = 2\mu_{\rm I} \frac{f/f_{\rm I}}{1 + (f/f_{\rm I})^2} + 2\mu_{\rm II} \frac{f/f_{\rm II}}{1 + (f/f_{\rm II})^2} \tag{1}$$

where  $\mu_{I}$  and  $\mu_{II}$  are the maximum amplitudes of the excess sound absorption per wavelength at the relaxation frequencies  $f_{\rm I}$  and  $f_{\rm II}$ respectively.

The fit between the experimental data and the calculated  $\mu$ values expressed by the solid line in Figure 3 was obtained by a computer graphic method allowing for iterative changes of the parameters  $f_{I}$ ,  $\mu_{I}$ ,  $f_{II}$ ,  $\mu_{II}$ , and B to achieve an optimum fit by both minimizing  $|\mu - \mu_{calc}|$  and averaging the frequency dispersion of  $|\mu - \mu_{calc}|$ . Figure 3 (parts C and D) shows, in fact, the deviational plots of  $[(\alpha/f^2) - (\alpha/f^2)_{calc}]$ % vs the frequency f. The systematic deviations between 1 and 2 MHz in Figure 3C,D are due to increasing failure of the resonator cells at the lowest used frequencies (lack of linearity between the  $(\Delta f)_{1/2}$ , namely, the bandwidth at half-power of the Lorentzian resonant bands, and frequency). Table I reports the parameters used for all the concentrations investigated for  $LiClO_4 + EG3$  and for  $LiClO_4$ + EG4 in acetonitrile at 25 °C and molar ratio R = [EG3]/ $[LiClO_4] = 1$  or  $[EG4]/[LiClO_4] = 1$ .

# **Calculations and Discussion**

Ultrasonic Data. Relaxation kinetics theory applied to the following Eigen-Winkler<sup>9</sup> scheme:

$$Li^{+} + EG \stackrel{k_{0}}{\longleftrightarrow} Li^{+} EG \stackrel{k_{1}}{\longleftrightarrow} Li^{+}EG \stackrel{k_{2}}{\overleftarrow{k_{1}}} (Li^{+}EG) \quad (2)$$



Figure 2. (A) Infrared spectrum of the -OH stretch region for 1.0 M EG3 in acetonitrile and for 1.0 M EG3 + 1.0 M LiClO<sub>4</sub> in acetonitrile. (B) IR spectrum (-OH stretch) for 1.0 M EG4 and for 1.0 M EG4 + 1.0 M LiClO<sub>4</sub> in acetonitrile.

leads to two observable relaxation times  $\tau_{I}$  and  $\tau_{II}$  under the assumption of two closely coupled reaction steps (characterized by the rate constants  $k_1, k_{-1}, k_2, k_{-2}$ , both loosely coupled to a much faster preequilibration process (characterized by a preequilibration formation constant  $\vec{K}_0$ ).

In the above scheme, Li<sup>+</sup> and EG are the free lithium ion and either the EG3 or EG4 ligand in solution. Li<sup>+</sup>...EG is a solvent separated species, Li<sup>+</sup>EG is a contact species, and (Li<sup>+</sup>EG) is a species with Li<sup>+</sup> embedded in the ethereal coil of the ethylene glycol ligand. Solution of the rate laws leads to the correlation between the sum S and the product P of the two relaxation times vs the rate constants and  $K_0$  (Appendix I, eq 5A):

$$S = \tau_{1}^{-1} + \tau_{11}^{-1} = k_{1}K_{0}\frac{\theta}{1 + K_{0}\theta} + k_{-1} + k_{2} + k_{-2}$$
$$P + \tau_{1}^{-1}\tau_{11}^{-1} = k_{1}K_{0}\frac{\theta}{1 + K_{0}\theta}(k_{2} + k_{-2}) + k_{-1}k_{-2}$$
(3)

In the above,  $\theta \simeq 2\alpha C$  where the degree of dissocation  $\alpha$  is related to the overall complexation constant  $K_{\Sigma}$  by the usual relation  $K_{\Sigma}$ =  $(1 - \alpha)/\alpha^2 C$ , neglecting the activity coefficient ratios. The values of  $K_{\Sigma} = 50$  and  $K_{\Sigma} = 150$  for Li<sup>+</sup> + EG3 and Li<sup>+</sup> + EG4 respectively were taken from a <sup>7</sup>Li NMR investigation.<sup>10</sup>  $K_0 =$ [Li+...EG]/[Li+][EG] has been calculated from the Fuoss relation<sup>11</sup>  $K_0 = 4\pi Ld^3/3000$  which, taking d = 7 Å as a reasonable parameter, gives  $K_0 = 0.87$ , namely, a quantity of the order of unity. In fact,  $K_0 = 1$  has been the numerical value retained here.

Plots of S and P vs  $f(\theta)$  for Li<sup>+</sup> + EG3 are given in Figure 4, parts A and B, respectively (supplementary material). Linear regression of S vs  $f(\theta)$  gives a determination coefficient  $r_1^2 = 0.85$ , an intercept  $I_{I} = k_{-1} + k_{2} + k_{-2} = 4.99 \times 10^{8}$ , and a slope  $S_{I} =$  $k_1K_0 = 1.6_8 \times 10^9$ . Linear regression of P vs  $f(\theta)$  gives a determination coefficient  $r_{II}^2 = 0.78$ , an intercept  $I_{II} = k_{-1}k_{-2} = 1.83 \times 10^{16}$ , and a slope  $S_{II} = k_1K_0(k_2 + k_{-2}) = 3.40 \times 10^{17}$ . From  $S_{II}/S_I$  one calculates  $k_2 + k_{-2}$ ; then  $I_1 - (S_{II}/S_I) = k_{-1}$ . Finally,  $I_{II}/k_{-1} = k_{-2}$ , which gives in turn  $k_2 = S_{II}/S_1 - k_{-2}$ .

Table II gives the rate constants calculated from the above sequence together with the average values of the equilibrium constants  $K_1 = k_1/k_{-1}$  and  $K_2 = k_2/k_{-2}$  as well as the overall

| ior An the Concentration  | nis micongarea              |                                | Liga                 | nd: EG3                         |                       |                                               |                                   |
|---------------------------|-----------------------------|--------------------------------|----------------------|---------------------------------|-----------------------|-----------------------------------------------|-----------------------------------|
| C <sub>LiClO4</sub> , M   | C <sub>EG</sub> , M         | $10^{5}\mu_{I}$                | f <sub>l</sub> , MHz | $10^5 \mu_{II}$                 | $f_{\rm II}$ , MHz    | $10^{17}B$ , cm <sup>-1</sup> s <sup>-2</sup> | $10^{-5}u$ , cm s <sup>-</sup> 11 |
| 0.026                     | 0.026                       | 110                            | 75                   | 110                             | 7                     | 57.5                                          | 1.287                             |
| 0.050                     | 0.050                       | 140                            | 85                   | 150                             | 9                     | 57.                                           | 1.294                             |
| 0.10                      | 0.10                        | 180                            | 80                   | 180                             | 13                    | 58.0                                          | 1.286                             |
| 0.20                      | 0.20                        | 300                            | 100                  | 270                             | 18                    | 55.5                                          | 1.287                             |
| 0.30                      | 0.30                        | 430                            | 95                   | 290                             | 14                    | 56. <sub>0</sub>                              | 1.297                             |
| 0.40                      | 0.40                        | 520                            | 100                  | 270                             | 20                    | 56. <sub>0</sub>                              | 1.300                             |
| 0.50                      | 0.50                        | 560                            | 100                  | 300                             | 16                    | 56.0                                          | 1.308                             |
| 0.75                      | 0.75                        | 750                            | 100                  | 340                             | 16                    | 58. <sup>°</sup>                              | 1.317                             |
| 1.0                       | 1.0                         | 878                            | 120                  | 326                             | 20                    | 67. <sub>0</sub>                              | 1.331                             |
|                           |                             |                                | Liga                 | nd: EG4                         |                       |                                               |                                   |
| $C_{\text{LiClO}_4}, M$   | C <sub>EG</sub> , M         | 10 <sup>5</sup> µ <sub>I</sub> | f <sub>l</sub> , MHz | $10^{5}\mu_{II}$                | $f_{\rm II}$ , MHz    | $10^{17}B$ , cm <sup>-1</sup> s <sup>-2</sup> | $10^{-5}u$ , cm s <sup>-1</sup>   |
| 0.032                     | 0.032                       | 40                             | 85                   | 83                              | 6                     | 63.5                                          | 1.278                             |
| 0.060                     | 0.060                       | 45                             | 90                   | 105                             | 8                     | 61.5                                          | 1.280                             |
| 0.080                     | 0.080                       | 130                            | 110                  | 125                             | 9                     | 58.5                                          | 1.286                             |
| 0.10                      | 0.10                        | 160                            | 110                  | 150                             | 14                    | 59                                            | 1.300                             |
| 0.20                      | 0.21                        | 260                            | 120                  | 255                             | 15                    | 57                                            | 1.291                             |
| 0.32                      | 0.32                        | 355                            | 130                  | 300                             | 17                    | 57                                            | 1.301                             |
| 0.40                      | 0.40                        | 365                            | 140                  | 341                             | 18                    | 58                                            | 1.305                             |
| 0.50                      | 0.50                        | 425                            | 145                  | 317                             | 19                    | 63.5                                          | 1.308                             |
| 0.65                      | 0.65                        | 485                            | 135                  | 290                             | 19                    | 58                                            | 1.308                             |
| 0.80                      | 0.80                        | 850                            | 150                  | 290                             | 22                    | 64                                            | 1.327                             |
| 1.00                      | 1.00                        | 1000                           | 155                  | 340                             | 20                    | 60                                            | 1.319                             |
| C <sub>LiCF3SO3</sub> , M | <i>C</i> <sub>EG3</sub> , M | 10 <sup>5</sup> µ <sub>1</sub> | f <sub>l</sub> , MHz | 10 <sup>5</sup> µ <sub>11</sub> | f <sub>II</sub> , MHz | $10^{17}B, \mathrm{cm}^{-1}\mathrm{s}^2$      | $10^{-5}u$ , cm s <sup>-1</sup>   |
| 0.85                      | 0.85                        | 1300                           | 160                  | 500                             | 17                    | 68                                            | 1.277                             |
| 0.605                     | 0.60                        | 760                            | 150                  | 541                             | 18                    | 67                                            | 1.267                             |
| 0.46                      | 0.46                        | 650                            | 130                  | 450                             | 16                    | 67                                            | 1.276                             |
| 0.303                     | 0.305                       | 443                            | 120                  | 420                             | 15                    | 65                                            | 1.272                             |
| 0.103                     | 0.105                       | 266                            | 110                  | 295                             | 11                    | 62                                            | 1.275                             |
| 0.30                      |                             | 350                            | 95                   | 270                             | 14                    | 57                                            | 1.271                             |
|                           |                             |                                | Salt = LiAsF         | $F_{6}$ , Ligand = E            | G3                    |                                               |                                   |
| C <sub>LiAsF6</sub> , M   | <i>C</i> <sub>EG3</sub> , M | $10^{5}\mu_{1}$                | f <sub>I</sub> , MHz | $10^{5}\mu_{11}$                | $f_{\rm II}$ , MHz    | $10^{17}B$ , cm <sup>-1</sup> s <sup>2</sup>  | $10^{-5}u$ , cm s <sup>-1</sup>   |
| 1.00                      | 1.00                        | 500                            | 170                  | 600                             | 30                    | 62                                            | 1.267                             |
| 0.75                      | 0.75                        | 350                            | 155                  | 468                             | 26                    | 61                                            | 1.263                             |

TABLE I: Ultrasonic Parameters and Sound Velocity (for LiClO<sub>4</sub> + EG3 and for LiClO<sub>4</sub> + EG4 at Molar Ratio R = 1 in Acetonitrile at 25 °C) for All the Concentrations Investigated<sup>a</sup>

<sup>a</sup> The parameters  $\mu_1$  and  $\mu_{II}$  are affected by an average error of ±10%; the relaxation frequencies  $f_1$  and  $f_{II}$  by an average error of ±10%. *B* is uncertain to within ±1 × 10<sup>-17</sup> cm<sup>-1</sup> s<sup>2</sup>, whereas the experimental average error in the sound velocities corresponds to ±0.5%.

375

360

310

170

20

19

16

12

150

123

120

120

average equilibrium constant  $K_{\Sigma} = K_0(1 + K_1 + K_1K_2)$ . Notice that  $K_{\Sigma} = 20$  (instead of the value of  $K_{\Sigma} = 50$  determined by NMR). The factor of 2.5 is neither meaningful nor significant, considering the large errors in  $K_1$  and  $K_2$  obtained from *ratios* of rate constants, and the distributed errors involved (Table II).

0.60

0.45

0.30

0.11

450

280

280

253

0.60

0.44

0.31

0.11

For Li<sup>+</sup> and EG4, plots of S and P vs  $f(\theta)$  are given in parts A and B of Figure 5, respectively (supplementary material). Linear regression of S vs  $f(\theta)$  gives  $r^2 = 0.91$ ,  $I_I = 5.3_9 \times 10^8$ , and  $S_I = 4.47 \times 10^9$ . Linear regression of P vs  $f(\theta)$  gives  $r^2 = 0.94$ ,  $I_{II} = 6.9_7 \times 10^{15}$ , and  $S_{II} = 9.4_6 \times 10^{17}$ .

The same sequence of calculations as done above for EG3 gives the rate constants  $k_1$ ,  $k_{-1}$ ,  $k_2$ , and  $k_{-2}$ , the equilibrium constants  $K_1$  and  $K_2$ , and an overall formation constant  $K_{\Sigma} = 138$  which is close (given the large experimental error) to the value determined by NMR, namely,  $K_{\Sigma} = 150$ . Table II collects all the above calculated parameters.

Comparison between the rate constants and equilibrium constants for the complexation of Li<sup>+</sup> with EG3 and for Li<sup>+</sup> with EG4 reveals that all the rate constants are within a factor of about 3. The differences, however, lead to  $K_1$  being a factor of 2 and to  $K_2$  being a factor of 4 larger for Li<sup>+</sup> + EG4 and eventually to  $K_{\Sigma}$  being larger for Li<sup>+</sup> + EG4 in acetonitrile.

Physically, it appears that a flexible acyclic ligand with five binding oxygens such as EG4 more effectively complexes Li<sup>+</sup> than the corresponding EG3 ligand with four binding oxygens. This is in contrast to the crown ethers, where 12C4 is expected to prevail over 15C5 when binding Li<sup>+</sup> in terms of affinity expressed by  $K_{\Sigma}$ . In the crown case, however, one must consider factors such as the

TABLE II: Rate Constants and Equilibrium Constants in Acetonitrile for the Complexation of LiClO<sub>4</sub> with the Ligands EG3, EG4, and TG3 at 25 °C

58

57

58

57

1.261

1.264

1.263

1.280

|                  | EG3                         | EG4                           | TG3ª                   |
|------------------|-----------------------------|-------------------------------|------------------------|
| $k_1, s^{-1}$    | $(1.7 \pm 0.3) \times 10^9$ | $(4.5 \pm 0.4) \times 10^9$   | $4_{.9} \times 10^{8}$ |
| $k_{-1}, s^{-1}$ | $(30 \pm 14) \times 10^8$   | $(3.3 \pm 1.5) \times 10^8$   | $1{4} \times 10^{8}$   |
| $K_1$            | $5.7 \pm 3.5$               | $136 \pm 74$                  | 3.5                    |
| $k_2, s^{-1}$    | $(14 \pm 16) \times 10^8$   | $(1.9 \pm 0.4) \times 10^{8}$ | $12 \times 10^{8 b}$   |
| $k_{-2}, s^{-1}$ | $(0.6 \pm 1.1) \times 10^8$ | $(2.1 \pm 0.7) \times 10^7$   | $9 \times 10^{6}$      |
| K <sub>2</sub>   | $23 \pm 66$                 | $9.1 \pm 5.1$                 | 13                     |
| K                | 1                           | 1                             | 1                      |
| $K_{\Sigma}$     | $20 \pm 49$                 | $138 \pm 149$                 | 50                     |

<sup>a</sup> Data from ref 3. <sup>b</sup> The figure  $k_2 = 1.2 \times 10^7$  reported in ref 3 is a misprint. <sup>c</sup> Estimated from the relation  $K_0 = 4\pi L d^3/3000$ , with  $d \simeq 7 \times 10^{-8}$  cm.

cavity size of the macrocycle 12C4 with respect to 15C5. For instance, in methanol Na<sup>+</sup> binds 15C5 with a  $K_{\Sigma}$  larger by a factor of ~40 with respect to 12C4.<sup>12</sup> The radius of Na<sup>+</sup>,  $r_{Na^+} = 1.0_2$  Å, is closer to that of the cavity of 15C5,  $r_{15C5} = 0.85$  Å, than to the cavity radius of 12C4,  $r_{12C4} = 0.6-0.75$ .<sup>13</sup> It is also of interest to compare the rate constants and equilibrium constants of Li<sup>+</sup> + EG3 with the corresponding values for the system Li<sup>+</sup> + triglyme which has the same chemical structure as EG3 but with the two -OH groups substituted by two methoxy groups, -OCH<sub>3</sub>. Table II reports these literature data<sup>3</sup> for Li<sup>+</sup> + triglyme. The comparison reveals that all the constants are within a factor of 3 with the exception of  $k_{-2}$ , which is a factor of 7 smaller for



Figure 3. (A) Representative ultrasonic relaxation spectrum, in the form of the excess sound absorption per wavelength  $\mu$  vs the frequency f, for LiClO<sub>4</sub> + EG3 at molar ratio  $R = [EG3]/[LiClO_4] = 1$  in acetonitrile at 25 °C. (B) Representative ultrasonic relaxation spectrum for LiClO<sub>4</sub> + EG4 at R = 1 in acetonitrile at 25 °C. (C) Deviational plot of  $[(\alpha/f^2) - (\alpha/f^2)_{calc}]$ % vs the frequency f for LiClO<sub>4</sub> + EG3 in acetonitrile. Same data as for Figure 3A. (D) Deviational plot of  $[(\alpha/f_2) - (\alpha/f_2)_{calc}]$ % vs the frequency f for LiClO<sub>4</sub> + EG4 in acetonitrile. Same data as for Figure 3B.

Li<sup>+</sup> + triglyme leading to the conclusion that  $K_{\Sigma}$ (Li<sup>+</sup> + triglyme) >  $K_{\Sigma}$ (Li<sup>+</sup> + EG3).

To calculate the isoentropic volume change for the normal modes I and II of the two observed processes, we require the two expressions<sup>14</sup>

$$\mu_{\rm I} = \frac{\pi}{2\beta_{\rm s}} \frac{\Delta V_{\rm I}^2}{RT} \left[ \frac{1}{\gamma_2 C_0 + C_1} + \frac{1}{C_2} \right]^{-1} = \frac{\pi}{2\beta_{\rm s}} \frac{\Delta V_{\rm I}^2}{RT} \Gamma_{\rm I}^{-1}$$
$$\mu_{\rm II} = \frac{\pi}{2\beta_{\rm s}} \frac{\Delta V_{\rm II}^2}{RT} \left[ \frac{1}{C_1 + C_2} + \frac{1}{C_3} \right]^{-1} = \frac{\pi}{2\beta_{\rm s}} \frac{\Delta V_{\rm II}^2}{RT} \Gamma_{\rm II}^{-2} \quad (4)$$

Thus one can calculate  $\Delta V_{\rm I}$  and  $\Delta V_{\rm II}$  if one knows the isoentropic compressibility  $\beta_s = (\rho u^2)^{-1}$  along with  $\rho = 0.777$  g/cm<sup>3</sup>, the density of the solution (taken to be about equal to that of the solvent), and u the sound velocity of the solutions. One must also calculate the concentration of the various species, here denoted by  $C_0 = [\rm Li^+] = [\rm EG]$ ,  $C_1 = [\rm Li^+ \cdots \rm EG]$ ,  $C_2 = [\rm Li^+ \rm EG]$ , and  $C_3 = [(\rm Li^+ \rm EG)]$ .

To this end we have used the following relations for the Li<sup>+</sup> + EG3 system:

i

$$K_{\Sigma} = 20 = \frac{C_1 + C_2 + C_3}{C_0^2} = \frac{C - C_0}{C_0^2}$$
$$K_0 = 1 = C_1 / C_0^2$$
$$K_1 = 5.7 = C_2 / C_1$$
$$K_2 = 2.3 = C_3 / C_2$$

The value of  $K_{\Sigma} = 20$  had to be used in order to maintain internal consistency and because of the need for the values of  $K_1$  and  $K_2$  that are otherwise unknown. Parts A and B of Figure 6 (supplementary material) give  $\mu_1$  and  $\mu_{II}$  vs  $\Gamma_I^{-1}$  and  $\Gamma_{II}^{-1}$ , respectively. The plots are not linear preventing any calculations of  $d\mu_I/d\Gamma_I^{-1}$ 

and of  $d\mu_{II}/d\Gamma_{II}^{-1}$  and hence of  $\Delta V_1$  and  $\Delta V_{II}$ . The reason that the plots are not linear could be either the use of  $K_{\Sigma} = 20$  or a competition involving  $ClO_4^-$  in the complexation process (see below).

The situation with the system Li<sup>+</sup> + EG4 is much better. The same calculation run with  $K_{\Sigma} = 138$ ,  $K_0 = 1$ ,  $K_1 = 13.6$ , and  $K_2 = 9.1$  instead of  $K_{\Sigma} = 150$ , for the same reasons noted above for Li<sup>+</sup> + EG3, leads to Figure 7. Linear regression of  $\mu_I$  vs  $\Gamma_I^{-1}$  giving 50% statistical weight to the origin yields  $r^2 = 0.96$ ,  $I_I = -4.9 \times 10^{-5}$ , and  $S_I = 288$  from which one calculates

$$\Delta V_{\rm I} = \left( \frac{2\beta_{\rm s} RT}{\pi} \frac{\mathrm{d}\mu_{\rm I}}{\mathrm{d}\Gamma_{\rm I}^{-1}} \right)^{1/2} = 18.6 \text{ cm}^3/\text{mol}$$
 (5)

with  $\bar{\beta}_s = (\rho u^2)^{-1} = 76_{.1} \times 10^{-12} \text{ dyn}^{-1} \text{ cm}^2$ , the average compressibility of the solutions ( $\bar{u} = 1.30 \times 10^5 \text{ cm s}^{-1}$ ). Linear regression is applied to the first four points of Figure 7B before the deviation from linearity occurs, probably due to anion effects.<sup>3</sup> Giving 50% statistical weight to the origin, this yields  $r^2 = 0.94$ ,  $I_{\rm H} = 7.5 \times 10^{-5}$ , and  $S_{\rm H} = 215$  from which one calculates

$$\Delta V_{\rm II} = \left[\frac{2\beta_{\rm s}RT}{\pi} \frac{\mathrm{d}\mu_{\rm II}}{\mathrm{d}\Gamma_{\rm II}^{-1}}\right] = 16.1 \text{ cm}^3/\mathrm{mol}$$

The value of  $\Delta V_{\rm I}$  is smaller by a factor of about 2 than the value for Li<sup>+</sup> + triglyme of  $\Delta V_{\rm I}$  = 34.2 cm<sup>3</sup>/mol. On the other hand, the value of  $\Delta V_{\rm II}$  is similar to that for Li<sup>+</sup> + triglyme of  $\Delta V_{\rm II}$  = 13.4 cm<sup>3</sup>/mol. Since both the introduction of the two -OH groups in lieu of -OCH<sub>3</sub> groups and the addition of one (-CH<sub>2</sub>CH<sub>2</sub>O-) unit differentiate EG4 from triglyme, comparisons are difficult. It is unfortunate that no  $\Delta V_{\rm I}$  or  $\Delta V_{\rm II}$  calculation is feasible for Li<sup>+</sup> + EG3 systems, as shown above.

**Infrared Data**: Anion Effect. The saturation effect of  $\mu_{II}$  vs  $\Gamma_{II}^{-1}$  shown in Figures 6B and 7B had already been reported<sup>3</sup> for



Figure 7. (A)  $\mu_1$  vs  $\Gamma_1^{-1}$  for LiClO<sub>4</sub> + EG4 in acetonitrile at 25 °C. (B)  $\mu_{II}$  vs  $\Gamma_{II}^{-1}$  for LiClO<sub>4</sub> + EG4 in acetonitrile at 25 °C.

the system  $LiClO_4$  + triglyme in acetonitrile at 25 °C. This effect varied with the nature of the anion, and it was attributed to the anion competing with the glyme for the first coordination sphere positions around Li<sup>+</sup>. The same interpretation is given here for the trends in Figures 6B and 7B. We wished, however, to have an independent experimental confirmation of this interpretation. To this end we have recorded infrared spectra of the  $\bar{\nu}_4$  vibrational mode of the  $ClO_4^-$  ion in the spectral region around ~625 cm<sup>-1</sup>. Figure 8A reports the spectrum of 1.0 M LiClO<sub>4</sub> showing clearly that the spectral envelope can be reproduced by the sum of two Gaussian-Lorentzian product functions<sup>15</sup>

$$A_{j} = A_{j}^{\circ} \left[ \exp\left(-\frac{(\bar{\nu} - \bar{\nu}_{j}^{\circ})^{2}}{2\sigma^{2}}\right) \right] \left[ 1 + \frac{(\bar{\nu} - \bar{\nu}_{j}^{\circ})^{2}}{\sigma^{2}} \right]^{-1}$$
(6)

with  $\sigma = (\Delta \bar{\nu}_j)_{1/2}/1.46$  denoting the standard error and  $(\Delta \bar{\nu}_j)_{1/2}$ the width of each band centered at the wavenumber  $\bar{\nu}_j$  and measured at half-maximum absorbance  $A_i^{\circ}/2$  for that band. The fit of the spectral envelope by the sum of Gaussian-Lorentzian product functions (eq 6) has been done by a computer graphic method allowing for iterative changes of the parameters  $A_i^{\circ}$ ,  $\bar{\nu}_i^{\circ}$ , and  $(\Delta \bar{\nu}_j)_{1/2}$  for each band up to an optimum fit by minimizing the  $|A - A_{calc}|$  for the total spectral envelope. The choice of the number of Gaussian-Lorentzian product functions (eq 6) necessary to reproduce each spectral envelope was dictated by evidence of the presence of asymmetry, shoulders or multiple peaks in the spectra studied. The existence of a satellite band at  $\bar{\nu} \simeq 632 \text{ cm}^{-1}$ for 1 M LiClO<sub>4</sub> in acetonitrile is ascribed to a contact ion pair, as done previously for other solvent systems dissolving  $LiClO_4$ .<sup>16</sup> In 2MeTHF, the band appeared, however, at  $\bar{\nu} = 638 \text{ cm}^{-1}$ . Figure 8, parts B and C, show the infrared spectrum in the same wavenumber region for the system 1.0 M LiClO<sub>4</sub> + 1.0 M EG3 and 1.0 M LiClO<sub>4</sub> + 1.0 M EG4 in acetonitrile. Again the spectral envelope can be interpreted by the sum of two Gaussian-Lorentzian product functions, but the amplitude of the



Figure 8. (A) Infrared spectrum of 1.0 M LiClO<sub>4</sub> in acetonitrile expressed in absorbance vs wavenumber  $\bar{\nu}$ . The spectral region for the  $\bar{\nu}_4$  mode of ClO<sub>4</sub><sup>-</sup> is depicted. The dashed line expresses the contribution of eq 6 for each band component. (B) Infrared spectrum for the  $\bar{\nu}_4$  mode of ClO<sub>4</sub><sup>-</sup> for the system 1.0 M LiClO<sub>4</sub> + 1.0 M EG3 in acetonitrile. (C) Infrared spectrum for the  $\bar{\nu}_4$  mode of ClO<sub>4</sub><sup>-</sup> for the system 1.0 M LiClO<sub>4</sub> + 1.0 M EG3 in acetonitrile.

satellite band appears reduced with respect to 1.0 M LiClO<sub>4</sub> as reported in Table III in the form of the normalized  $A^{\circ}_{632}/l$  absorbances. The reduction appears to be larger for EG4 than for EG3 reflecting both the larger  $K_{\Sigma}$  of EG4 and the better ability of the pentadentate ligand to segregate ClO<sub>4</sub><sup>-</sup> out of contact with Li<sup>+</sup>.

TABLE III: Infrared Parameters  $A_j^{\circ}$ ,  $\bar{\nu}_j^{\circ}$ ,  $(\Delta \bar{\nu}_j)_{1/2}$ , Cell Length *I*, and Normalized Maximum Absorbance  $(A_i^{\circ}/I)$  for the Band Components of the Spectra of 1 M LiClO<sub>4</sub> and of 1 M LiClO<sub>4</sub> Added to the Acyclic Ligands EG3, EG4, TG3, and TG4, and to the Cyclic Ligands 12C4 and 15C5 at C = 1.0 M, Each in Acetonitrile<sup>4</sup>

| A° 625                             | ₽° <sub>625</sub>                | $\Delta \overline{p}_{1/2}$ | A° 632 | ₽° <sub>632</sub> | $\Delta \bar{\nu}_{1/2}$ | A° <sub>625</sub> /l | A° <sub>632</sub> /l     |  |  |
|------------------------------------|----------------------------------|-----------------------------|--------|-------------------|--------------------------|----------------------|--------------------------|--|--|
| Ligand = None, $l = 0.00478$ cm    |                                  |                             |        |                   |                          |                      |                          |  |  |
| 0.78                               | 625                              | 10                          | 0.24   | 632               | 25                       | 163                  | 50. <sub>2</sub>         |  |  |
|                                    | Ligand = EG3, $l = 0.00530_3$ cm |                             |        |                   |                          |                      |                          |  |  |
| 0.87                               | 625                              | 11                          | 0.23   | 632               | 27                       | 164                  | <b>43</b> . <sub>3</sub> |  |  |
|                                    | Ligand = EG4, $l = 0.00478$ cm   |                             |        |                   |                          |                      |                          |  |  |
| 0.95                               | 625                              | 10                          | 0.17   | 631.5             | 25                       | 1 <b>99</b>          | 35. <sub>6</sub>         |  |  |
| Ligand = TG3, $l = 0.0051$ cm      |                                  |                             |        |                   |                          |                      |                          |  |  |
| 0.90                               | 625                              | 10.5                        | 0.13   | 633               | 24                       | 177                  | 25.5                     |  |  |
| Ligand = TG4, $l = 0.0051$ cm      |                                  |                             |        |                   |                          |                      |                          |  |  |
| 1.05                               | 624.5                            | 10.5                        | 0.12   | 632               | 24                       | 206                  | 23.5                     |  |  |
| Ligand = $12C4$ , $l = 0.00505$ cm |                                  |                             |        |                   |                          |                      |                          |  |  |
| 1.05                               | 624.5                            | 9                           | 0.165  | 632               | 25                       | 208                  | 32.7                     |  |  |
| Ligand = $15C5$ , $l = 0.00503$ cm |                                  |                             |        |                   |                          |                      |                          |  |  |
| 1.15                               | 624.5                            | 9.5                         | 0.135  | 630               | 25                       | 229                  | 26.8                     |  |  |

<sup>a</sup> The spectral region studied corresponds to the  $\bar{\nu}_4$  normal mode of ClO4<sup>-</sup>.



C(mol/dm<sup>3</sup>) → Figure 10. (A)  $\tau_1^{-1}$  vs concentration for the fast process of LiClO<sub>4</sub> O, LiAsF<sub>6</sub> O, LiSO<sub>3</sub>CF<sub>3</sub>  $\blacktriangle$  + EG3 in CH<sub>3</sub>CN; at 25 °C; molar ratio R = <sup>1</sup> vs concentration for the slow process of  $LiClO_4 O$ ,  $LiAsF_6$ 1. (B)  $\tau_{11}$ **•**, and LiSO<sub>3</sub>CF<sub>3</sub>  $\blacktriangle$  + EG3 in CH<sub>3</sub>CN; at 25 °C; molar ratio R = 1.

0.2

0.4

0.6

0.8

1.0

Figures 9, parts A and B (supplementary material) present the same spectrum for the systems 1.0 M LiClO<sub>4</sub> + 1.0 M triglyme (TG3) and 1.0 M LiClO<sub>4</sub> + 1.0 M tetraglyme (TG4), respectively, in acetonitrile. The spectra can also be interpreted by the sum of two Gaussian-Lorentzian product functions. Table III reports the parameters  $A_j^{\circ}$ ,  $\overline{p}_j^{\circ}$ ,  $(\Delta \overline{p}_{1/2})_J$  for each band of the above fitted spectra, the thickness *l* of the infrared cell, and the normalized maximum absorbances per unit cell length  $A_i^{\circ}/l$  for each band. The normalized amplitudes  $(A^{\circ}_{632}/l)$  appear now reduced by a factor of about 2 with respect to the normalized amplitude  $(A^{\circ}_{632}/l)$  of the satellite band of LiClO<sub>4</sub> 1.0 M.



Figure 11. (A)  $\mu_1$  vs concentration for the fast process of LiClO<sub>4</sub> O, LiAsF<sub>6</sub>  $\bullet$ , and LiSO<sub>3</sub>CF<sub>3</sub>  $\blacktriangle$  + EG3 in CH<sub>3</sub>CN; at 25 °C; molar ratio R = 1. (B)  $\mu_{II}$  vs concentration for the slow process of LiClO<sub>4</sub> O, LiAsF<sub>6</sub> **•**, and LiSO<sub>3</sub>CF<sub>3</sub>  $\blacktriangle$  + EG3 in CH<sub>3</sub>CN; at 25 °C; molar ratio R = 1.

Figure 9, parts C and D (supplementary material) are the infrared spectra of the systems 1.0 M  $LiClO_4$  + the cyclic macrocycles 1.0 M 12C4 and 1.0 M 15C5 in acetonitrile. Again these spectral envelopes may be interpreted by the sum of two Gaussian-Lorentzian bands, but, whereas the normalized  $A^{\circ}_{632}/l$ for 15C5 is comparable to the value for TG4, the value of  $A^{\circ}_{632}/l$ for 12C4 is larger. Perhaps the decrease in the bands reflects the steric ability of the ethereal ligands to segregate Li<sup>+</sup> from contacting  $ClO_4^-$  in addition to the complexation of Li<sup>+</sup> with the ethereal ligands. This would explain the larger  $A^{\circ}_{632}/l$  value for 12C4 with respect to that for 15C5 and the persistences of a satellite species for  $ClO_4^-$  in the presence of the macrocyclic ligands, which presumably have larger formation constants with the Li<sup>+</sup> than do the acyclic ethers. Solid-state X-ray crystallographic data<sup>17</sup> for RbSCN + dibenzo-18C6 show that Rb<sup>+</sup> is complexed by the macrocyclic ether through the oxygen atoms and lies slightly out of the plane of the crown ether. Also, Rb<sup>+</sup> is coordinated with the nitrogen end of the anion pointing toward Rb<sup>+</sup>, the anion being normally oriented with respect to the crown ether. The complete system looks like an umbrella blown inside out by a gust of wind.

Anion Effect: Nature of the Anion. In a previous paper,<sup>3</sup> it was pointed out that  $LiClO_4$  and  $LiAsF_6$  complexing triglyme in CH<sub>3</sub>CN yielded different excess sound absorptions per wavelength  $\mu_{\rm I}$  and  $\mu_{\rm II}$ .

Ultrasonic spectra of LiAsF<sub>6</sub> and of lithium triflate LiSO<sub>4</sub>CF<sub>3</sub> in molar ratio R = 1 with EG3 in the solvent acetonitrile at 25 °C have been recorded. The spectra can be interpreted by the sum of two Debye relaxation processes. Table I reports the parameters  $f_{I}, f_{II}, \mu_{I}, \mu_{II}, B$ , and the sound velocity u for the above two systems at the concentrations investigated in CH<sub>3</sub>CN at 25 °C. An effect specific to the anion is visible in both plots of  $\tau_1^{-1}$ vs concentration C (Figure 10A) and  $\tau_{II}^{-1}$  vs concentration C (Figure 10B). In particular, this effect is present over the entire concentration range for the "fast" process characterized by  $\tau_{I}^{-1}$ ,

TABLE IV: Infrared Parameters  $A^{\circ}_{,p} \bar{\nu}^{\circ}_{,p} (\Delta \bar{\nu}_{j})_{1/2}$ , Cell Length / for the Band Components of the Spectra of LiX (X = AsF<sub>6</sub><sup>-</sup>, CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>) and of LiX Added of the Acyclic Ligands EG3 and EG4 in Acetonitrile X = AsF<sub>6</sub><sup>-</sup>, n = 3

|                                   |                                         |                                                                                                                                              | $X = X SI_6$                                                                                                                                 | n - J    |                                                                                                                                              |                                   |                                                                                                                                                                                  |  |  |  |
|-----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CLIASES                           | C <sub>EGn</sub>                        | A° 750                                                                                                                                       | ν° <sub>750</sub>                                                                                                                            |          | $(\Delta \bar{\nu}_{1/2})_{750}$                                                                                                             | A° 704                            | ₽° 704                                                                                                                                                                           |  |  |  |
| 0.40                              | 0.40,                                   | 0.11                                                                                                                                         | 750                                                                                                                                          |          | 18                                                                                                                                           | 1.88                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.30                              | 0.30                                    | 0.125                                                                                                                                        | 750                                                                                                                                          |          | 18                                                                                                                                           | 1.49                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.20                              | 0.200                                   | 0.26                                                                                                                                         | 749                                                                                                                                          |          | 18                                                                                                                                           | 2.12                              | 703.5                                                                                                                                                                            |  |  |  |
| 0.15,                             | 0.160                                   | 0.24                                                                                                                                         | 749.5                                                                                                                                        |          | 18                                                                                                                                           | 1.46                              | 703.5                                                                                                                                                                            |  |  |  |
| 0.10                              | 0.099                                   | 0.25                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 1.02                              | 703.5                                                                                                                                                                            |  |  |  |
| 0.0757                            | 0.0761                                  | 0.26                                                                                                                                         | 749.5                                                                                                                                        |          | 16.5                                                                                                                                         | 0.782                             | 703.7                                                                                                                                                                            |  |  |  |
| 0.050 <sub>5</sub>                | 0.049                                   | 0.28                                                                                                                                         | 749                                                                                                                                          |          | 17                                                                                                                                           | 0.54                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.0286                            | 0.032                                   | 0.26                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 0.295                             | 703.7                                                                                                                                                                            |  |  |  |
| $C_{\mathrm{LiAsF_6}}$            | $(\Delta \bar{\nu}_{1/2})_{704}$        | 10 <sup>3</sup> <i>l</i> <sub>cell</sub>                                                                                                     | , cm                                                                                                                                         |          | C <sub>LiAsF6</sub>                                                                                                                          | $(\Delta \bar{\nu}_{1/2})_{704}$  | $10^3 l_{\text{cell}}$ , cm                                                                                                                                                      |  |  |  |
| 0.400                             | 12.3                                    | 2.2                                                                                                                                          | 7                                                                                                                                            |          | 0.101                                                                                                                                        | 11.5                              | 4.73                                                                                                                                                                             |  |  |  |
| 0.300                             | 11.5                                    | 2.4                                                                                                                                          | 1                                                                                                                                            |          | 0.0757                                                                                                                                       | 10.5                              | 4.7,                                                                                                                                                                             |  |  |  |
| 0.200                             | 11.5                                    | 5.0                                                                                                                                          | כ                                                                                                                                            |          | 0.0505                                                                                                                                       | 11.8                              | 5.03                                                                                                                                                                             |  |  |  |
| 0.152                             | 11.5                                    | 4.0                                                                                                                                          | 2                                                                                                                                            |          | 0.0286                                                                                                                                       | 10.5                              | 4.70                                                                                                                                                                             |  |  |  |
| $X = AsF_6, n = 4$                |                                         |                                                                                                                                              |                                                                                                                                              |          |                                                                                                                                              |                                   |                                                                                                                                                                                  |  |  |  |
| C <sub>LiAsF6</sub>               | EG,                                     | A° <sub>750</sub>                                                                                                                            | <b>ν°</b> <sub>750</sub>                                                                                                                     |          | $(\Delta \bar{\nu}_{1/2})_{750}$                                                                                                             | A° 704                            | ₽° 704                                                                                                                                                                           |  |  |  |
| 0.400                             | 0.400                                   | 0.11                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 2.35                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.300                             | 0.301                                   | 0.11                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 1.58                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.201                             | 0.203                                   | 0.11                                                                                                                                         | 749.7                                                                                                                                        |          | 17                                                                                                                                           | 0.95                              | 704                                                                                                                                                                              |  |  |  |
| 0.156                             | 0.155                                   | 0.12                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 0.81                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.102                             | 0.101                                   | 0.25                                                                                                                                         | 750.2                                                                                                                                        |          | 17                                                                                                                                           | 1.02                              | 705                                                                                                                                                                              |  |  |  |
| 0.050                             | 0.0524                                  | 0.24                                                                                                                                         | 750.2                                                                                                                                        |          | 17                                                                                                                                           | 0.49                              | 705                                                                                                                                                                              |  |  |  |
| $C_{\text{LiAsF}_6}$              | $(\Delta \bar{\nu}_{1/2})_{704}$        | $10^3 l_{cell}$                                                                                                                              | , cm                                                                                                                                         |          | C <sub>LiAsF6</sub>                                                                                                                          | $(\Delta \bar{\nu}_{1/2})_{704}$  | $10^{3}l_{cell}, cm$                                                                                                                                                             |  |  |  |
| 0.400                             | 12                                      | 2.5                                                                                                                                          | 4                                                                                                                                            |          | 0.156                                                                                                                                        | 12                                | 2.44                                                                                                                                                                             |  |  |  |
| 0.300                             | 12                                      | 2.7                                                                                                                                          | )                                                                                                                                            |          | 0.102                                                                                                                                        | 11                                | 4.63                                                                                                                                                                             |  |  |  |
| 0.201                             | 11.5                                    | 2.1                                                                                                                                          | 7                                                                                                                                            |          | 0.050                                                                                                                                        | 10.8                              | 4.38                                                                                                                                                                             |  |  |  |
|                                   |                                         |                                                                                                                                              | X = As                                                                                                                                       | F₄⁻      |                                                                                                                                              |                                   |                                                                                                                                                                                  |  |  |  |
| CLIARE                            | C <sub>EC</sub>                         | A°250                                                                                                                                        | <b>ν</b> ° <sub>750</sub>                                                                                                                    |          | (Δ₽1/2)750                                                                                                                                   | A° to a                           | <u></u> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>4</sup> |  |  |  |
| 0.300                             | - EGI                                   | 0.11                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 1.88                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.300                             |                                         | 0.11                                                                                                                                         | 749.5                                                                                                                                        |          | 17                                                                                                                                           | 1.00                              | 703.7                                                                                                                                                                            |  |  |  |
| 0.150                             |                                         | 0.24                                                                                                                                         | 749.5                                                                                                                                        |          | 18                                                                                                                                           | 1.48                              | 704                                                                                                                                                                              |  |  |  |
| C                                 | ( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 103/                                                                                                                                         |                                                                                                                                              |          | <u> </u>                                                                                                                                     | (Aī,)                             | 10 <sup>3</sup> / cm                                                                                                                                                             |  |  |  |
| CLiAsF <sub>6</sub>               | (2)/2/704                               |                                                                                                                                              | , •111                                                                                                                                       |          | CLiAsF <sub>6</sub>                                                                                                                          | 11.2                              | 10 t <sub>cell</sub> , cm                                                                                                                                                        |  |  |  |
| 0.399                             | 12.5                                    | 2.3                                                                                                                                          | 9                                                                                                                                            |          | 0.150                                                                                                                                        | 11.2                              | 4./9                                                                                                                                                                             |  |  |  |
| 0.300                             | 11.5                                    | 2.1                                                                                                                                          | 0                                                                                                                                            |          |                                                                                                                                              |                                   |                                                                                                                                                                                  |  |  |  |
|                                   |                                         |                                                                                                                                              | $X = CF_3SO_3$                                                                                                                               | -, n = 3 |                                                                                                                                              | ·                                 |                                                                                                                                                                                  |  |  |  |
| $C_{\text{LiX}}$                  | $C_{EGn}$                               | A° <sub>1300</sub>                                                                                                                           | ₽° <sub>1300</sub>                                                                                                                           |          | $(\Delta \bar{\nu}_{1/2})_{1300}$                                                                                                            | A° <sub>1273</sub>                | <i>p</i> ° <sub>1273</sub>                                                                                                                                                       |  |  |  |
| 0.192                             |                                         | 0.48                                                                                                                                         | 1299.5                                                                                                                                       |          | 15                                                                                                                                           | 0.39                              | 1273                                                                                                                                                                             |  |  |  |
| 0.174                             |                                         | 0.44                                                                                                                                         | 1 <b>299</b> .5                                                                                                                              |          | 16                                                                                                                                           | 0.38                              | 1273                                                                                                                                                                             |  |  |  |
| 0.152                             |                                         | 0.36                                                                                                                                         | 1299.5                                                                                                                                       |          | 17                                                                                                                                           | 0.32                              | 1272.5                                                                                                                                                                           |  |  |  |
| 0.126                             |                                         | 0.29                                                                                                                                         | 1299.5                                                                                                                                       |          | 14                                                                                                                                           | 0.275                             | 1273                                                                                                                                                                             |  |  |  |
| 0.100                             |                                         | 0.70                                                                                                                                         | 1299.5                                                                                                                                       |          | 14                                                                                                                                           | 0.785                             | 1272.5                                                                                                                                                                           |  |  |  |
| 0.0745                            |                                         | 0.54                                                                                                                                         | 1299.5                                                                                                                                       |          | 14.5                                                                                                                                         | 0.70                              | 1272.5                                                                                                                                                                           |  |  |  |
| 0.0486                            |                                         | 0.28                                                                                                                                         | 1299.5                                                                                                                                       |          | 14                                                                                                                                           | 0.50                              | 1272.5                                                                                                                                                                           |  |  |  |
| 0.0256                            |                                         | 0.14                                                                                                                                         | 1299.5                                                                                                                                       | `        | 14                                                                                                                                           | 0.33                              | 1272.5                                                                                                                                                                           |  |  |  |
| 0.130                             |                                         | 0.09                                                                                                                                         | 1299.5                                                                                                                                       |          | 10                                                                                                                                           | 0.27                              | 1272                                                                                                                                                                             |  |  |  |
| $(\Delta \bar{\nu}_{1/2})_{1273}$ | A <sup>0</sup> 1256                     | <u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u> | $(\Delta \bar{\nu}_{1/2})_{1256}$                                                                                                            | A•1227   | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | $(\Delta \bar{\nu}_{1/2})_{1227}$ | 107 <sub>ceil</sub> , cm                                                                                                                                                         |  |  |  |
| 17                                | 0.42                                    | 1256                                                                                                                                         | 17                                                                                                                                           | 0.145    | 1227.5                                                                                                                                       | 11                                | 3.02                                                                                                                                                                             |  |  |  |
| 17                                | 0.39                                    | 1256                                                                                                                                         | 16.5                                                                                                                                         | 0.14     | 1227.5                                                                                                                                       | 12                                | 3.01                                                                                                                                                                             |  |  |  |
| 17                                | 0.31                                    | 1230.5                                                                                                                                       | 16                                                                                                                                           | 0.11     | 1227                                                                                                                                         | 15                                | 3.01                                                                                                                                                                             |  |  |  |
| 10.5                              | 0.275                                   | 1256                                                                                                                                         | 16                                                                                                                                           | 0.09     | 1227.5                                                                                                                                       | 10                                | 10.6                                                                                                                                                                             |  |  |  |
| 16                                | 0.095                                   | 1250.5                                                                                                                                       | 17.                                                                                                                                          | 0.25     | 1227                                                                                                                                         | 13                                | 10.0                                                                                                                                                                             |  |  |  |
| 15.5                              | 0.32                                    | 1256                                                                                                                                         | 16.                                                                                                                                          | 0.25     | 1227                                                                                                                                         | 11.5                              | 10.6                                                                                                                                                                             |  |  |  |
| 15.5                              | 0.19                                    | 1256.                                                                                                                                        | 17.5                                                                                                                                         | 0.075    | 1225.                                                                                                                                        | 12                                | 10.6                                                                                                                                                                             |  |  |  |
| 14                                | 0.135                                   | 1257                                                                                                                                         | 16.5                                                                                                                                         | 0.065    | 1225.5                                                                                                                                       | 11                                | 10.6                                                                                                                                                                             |  |  |  |
|                                   |                                         | LiSO-CF                                                                                                                                      | + EG3 in CH <sub>2</sub> Cl                                                                                                                  | N. X = C | $CF_1SO_2, n = 3$                                                                                                                            |                                   |                                                                                                                                                                                  |  |  |  |
| <u> </u>                          | Crai                                    | <u></u> <u>A°</u>                                                                                                                            | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |          | $(\Delta \overline{\nu}, \mu)$                                                                                                               | A°,,,,,,                          | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>                                     |  |  |  |
| 0 202                             | 0 203                                   | 0.25                                                                                                                                         | 1295                                                                                                                                         |          | 21                                                                                                                                           | 0.49                              | 1271                                                                                                                                                                             |  |  |  |
| 0.174                             | 0.178                                   | 0.205                                                                                                                                        | 1295                                                                                                                                         |          | 20                                                                                                                                           | 0.43                              | 1271.5                                                                                                                                                                           |  |  |  |
| 0.152                             | 0.152                                   | 0.19                                                                                                                                         | 1295.4                                                                                                                                       |          | 21                                                                                                                                           | 0.38                              | 1272                                                                                                                                                                             |  |  |  |
| 0.124                             | 0.125                                   | 0.13                                                                                                                                         | 1295.4                                                                                                                                       |          | 20                                                                                                                                           | 0.33                              | 1272                                                                                                                                                                             |  |  |  |
| 0.100                             | 0.105                                   | 0.26                                                                                                                                         | 1297.5                                                                                                                                       |          | 17                                                                                                                                           | 0.79                              | 1271.7                                                                                                                                                                           |  |  |  |
| 0.0775                            | 0.0737                                  | 0.31                                                                                                                                         | 1296                                                                                                                                         |          | 21                                                                                                                                           | 0.90                              | 1272                                                                                                                                                                             |  |  |  |
| 0.0464                            | 0.0445                                  | 0.128                                                                                                                                        | 1297                                                                                                                                         |          | 15                                                                                                                                           | 0.58                              | 1271.7                                                                                                                                                                           |  |  |  |
| 0.0132                            | 0.0127                                  | 0.046                                                                                                                                        | 1297                                                                                                                                         |          | 19                                                                                                                                           | 0.25                              | 1272                                                                                                                                                                             |  |  |  |
| 0.0267                            | 0.0330                                  | 0.080                                                                                                                                        | 1296                                                                                                                                         |          | 20                                                                                                                                           | 0.40                              | 12/2                                                                                                                                                                             |  |  |  |

.



200

**Figure 12.** (A)  $\alpha/f^2$  vs frequency f for 0.31 M LiAsF<sub>6</sub> + 0.30 M EG3 O, and 0.29 M LiAsF<sub>6</sub> •, in CH<sub>3</sub>CN at 25 °C. (B)  $(\alpha/f^2)$  vs frequency f for 0.30 M LiSO<sub>3</sub>CF<sub>3</sub> + 0.31 M EG3 O and 0.30 M LiSO<sub>3</sub>CF<sub>3</sub> • in CH<sub>3</sub>CN at 25 °C.

but is present only for  $C \ge 0.4$  M for the "slow" process characterized by  $\tau_{II}^{-1}$ . Figure 11, parts A and B, depicts  $\mu_I$  and  $\mu_{II}$ vs the concentration for the three electrolytes + EG3 at molar ratio R = [EG3]/[LiX] = 1 (X<sup>-</sup> = ClO<sub>4</sub><sup>-</sup>, AsF<sub>6</sub><sup>-</sup>, CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>). The same specificity with regard to the nature of the anion appears at  $C \ge 0.2$  M. Evidently, the anion competes with EG3 for coordination sites around Li<sup>+</sup>. The two ligands, the anion and EG3 interfere also during the first "fast" step as shown by the specificity of  $\tau_1^{-1}$  and  $\mu_1$  to the nature of the anion. In search of proofs of these statements, we have run the ultrasonic spectrum of LiAsF<sub>6</sub> 0.30 M in CH<sub>3</sub>CN at 25 °C. A small ultrasonic relaxation centered at frequencies above 100 MHz is present for the electrolyte alone. (Ultrasonic spectra of 0.31 M LiAsF<sub>6</sub> + 0.30 M EG3 and of 0.30 M LiAsF<sub>6</sub> alone in CH<sub>3</sub>CN at 25 °C are compared in Figure 12A. Both spectra are plotted as  $\alpha/f^2$ vs the frequency f.)



0.2

0.1

0.3

0.4

Figure 12B shows the ultrasonic spectrum of 0.30 M lithium triflate in CH<sub>3</sub>CN in the form of  $(\alpha/f^2)$  vs f compared with that of 0.30 M lithium triflate + 0.30 M EG3 in CH<sub>3</sub>CN at 25 °C. The two spectra are comparable putting into question the relative role of the ligand responsible for the relaxation process for the lithium triflate + EG3 system. This is a quite surprising result since LiSO<sub>3</sub>CF<sub>3</sub> is widely used by polymer chemists in media of lower permittivity than CH<sub>3</sub>CN (such as pure liquid polymers) in the expectation that the triflate anion does not interfere with the polymer chain in complexing Li<sup>+</sup>.



Figure 14. (A) IR spectrum: LiSO<sub>3</sub>CF<sub>3</sub> 0.15 M in CH<sub>3</sub>CN  $l_{cell} = 0.0030$  cm. (B) 0.0256 M LiSO<sub>3</sub>CF<sub>3</sub> in CH<sub>3</sub>CN;  $l_{cell} = 0.0106$  cm. (C) 0.10 M LiSO<sub>3</sub>CF<sub>3</sub> + 0.10 M EG3 in CH<sub>3</sub>CN  $l_{cell} = 0.0106$  cm. (D) 0.10 M LiSO<sub>3</sub>CF<sub>3</sub> in CH<sub>3</sub>CN;  $l_{cell} = 0.0106$  cm.

An extensive infrared investigation has been carried out, searching for a more direct structural proof of the competition between the anions and EG3 (or EG4) for a first coordination sphere site on Li<sup>+</sup> in CH<sub>3</sub>CN. Figure 13A reports the  $\bar{\nu}_3$  mode of vibration of the AsF<sub>6</sub><sup>-</sup> ion in the 690-730-cm<sup>-1</sup> wavenumber range for a representative  $LiAsF_6 + EG3$  system at molar ratio R = 1 in CH<sub>3</sub>CN. The band centered at  $\bar{\nu}^{\circ} \simeq 750$  cm<sup>-1</sup> belongs to the solvent. Figure 13B reports the same spectrum for the electrolyte  $LiAsF_6$  alone in  $CH_3CN$ . No apparent alteration of the spectrum occurs because of the presence of EG3 (or EG4 in corresponding spectra). This confirms the ultrasonic results showing no effect due to the anion for  $C \le 0.40$  M, for the "slow" process, but only an effect present for the "fast" process (Figure 10B,A). Evidently, the vibrational spectra cannot distinguish noncontact effects ascribable to the  $AsF_6^-$  ion. Therefore only interactions leading to contact species will affect the  $\bar{\nu}_3$  mode of the As  $F_{6}^{-}$  ion. On the contrary, the ultrasonic relaxation spectrum monitors interference of outer-sphere  $AsF_6^-$  to the substitution of solvent around Li<sup>+</sup> by EG3 or EG4. The faster  $\tau_1^{-1}$  for Li<sup>+</sup> when AsF<sub>6</sub><sup>-</sup> is present may reflect an easier release of CH<sub>3</sub>CN from the  $Li(CH_3CN)_{x-1}$  +AsF<sub>6</sub> ion pair compared to Li+- $(CH_3CN)_x$ 

Figure 13C reports the normalized  $(A^{\circ}_{j}/l)$  for unit cell length l for the bands of the AsF<sub>6</sub><sup>-</sup> ion of the above systems. All the data fall on the same line within experimental error. Table IV reports the infrared parameters  $\bar{\nu}^{\circ}_{j}$ ,  $A^{\circ}_{j}$ , and  $(\Delta \bar{\nu}_{j})_{1/2}$  according to the Gaussian-Lorentzian product functions (eq 6) used to interpret the  $\bar{\nu}_{3}$  envelope of the AsF<sub>6</sub><sup>-</sup> ion for these systems.

We then investigated the triflate ion,  $CF_3SO_3^-$ , for the LiSO<sub>3</sub>CF<sub>3</sub> solutions in CH<sub>3</sub>CN and for the LiSO<sub>3</sub>CF<sub>3</sub> + EG3 solutions in CH<sub>3</sub>CN at molar ratio R = 1. Figure 14A reports the spectral envelope of the CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> ion for the system 0.152 M LiSO<sub>3</sub>CF<sub>3</sub> in CH<sub>3</sub>CN in the wavenumber region 1330–1200 cm<sup>-1</sup>. Figure 14B reports the same spectral envelope for 0.0256 M LiSO<sub>3</sub>CF<sub>3</sub> in CH<sub>3</sub>CN. This region of the -SO<sub>3</sub><sup>-</sup> spectrum cor-

responds to the asymmetric SO<sub>3</sub> stretch. The spectral envelope can be interpreted by the sum of four Gaussian-Lorentzian bands (eq 6) centered around 1300, 1273, 1257, and 1227 cm<sup>-1</sup>. From the figure, it is apparent that the bands at 1300 and 1257  $cm^{-1}$ change with concentration faster than the others. This could be attributed to either these bands having a larger molar absorptivity or extinction coefficient or to the effect of Li<sup>+</sup> forming contact ion pairs as described below. Table IV reports all the infrared parameters  $A^{\circ}_{j}$ ,  $\bar{\nu}^{\circ}_{j}$ , and  $(\Delta \bar{\nu}_{j})_{1/2}$  belonging to the bands of the spectral envelope according to the computer graphics fit. Figure 14C,D reports the same spectral region for the system LiSO<sub>3</sub>CF<sub>3</sub> + EG3 at molar ratio = 1 at a concentration 0.105 M and for 0.10 M LiSO<sub>3</sub>CF<sub>3</sub>. The effect of the addition of EG3 (which has no absorption band in this region of the spectrum) is to decrease dramatically the bands at  $\sim 1300$  and at  $\sim 1257$  cm<sup>-1</sup>. This effect is equivalent to the one of diluting LiSO<sub>3</sub>CF<sub>3</sub> as shown in Figure 14A,B. Hence EG3 seems to be able to segregate partially Li<sup>+</sup> from contacting the sulfonate group of the triflate ion, showing that  $LiSO_3CF_3$  in acetonitrile has extensive ion pairing. This confirms the ultrasonic results above. Figure 15A,B (supplementary material) reports the normalized  $A^{\circ}_{j}/l$  vs C for the four bands of the LiSO<sub>3</sub>CF<sub>3</sub> and of LiSO<sub>3</sub>CF<sub>3</sub> + EG3 at R = 1 in acetonitrile.

# Conclusions

Substitution of both  $-OCH_3$  groups of triglyme with -OH groups of EG3 does not alter dramatically the kinetics of complexation of Li<sup>+</sup> with these ethereal ligands. The -OH groups undoubtedly interact with Li<sup>+</sup>, as demonstrated by the IR spectra in the -OH stretch region, shown in Figure 2. The spectra do not allow, however, a determination of whether this interaction is prevalent in the initial contact process, or when Li<sup>+</sup> is subsequently embedded in the ethereal coil of the ligand.

Addition of a  $(-CH_2CH_2O_-)$  moiety, as in EG4 contrasted with EG3, makes possible coordination of Li<sup>+</sup> ion by five instead of

page.

four oxygen atoms. Both rate constants and equilibrium constants are altered by a factor of 3 or 4, the pentadentate ligand appearing to be favored over the tetradentate ligand (at variance with what is generally known for cyclic ligands such as the crown ethers, when complexed to  $Li^+$ ).

The anion  $\text{ClO}_4^-$  seems to play a competitive role in the process of complexation of Li<sup>+</sup> by both EG3 and EG4 as reflected by the saturation observed in  $\mu_{\text{II}}$  vs  $\Gamma_{\text{II}}^{-1}$  plots. The infrared spectra document the persistent contact of the anion with Li<sup>+</sup> at C = 1.0M in the presence of all the acyclic and cyclic ligands studied so far in acetonitrile. Use of AsF<sub>6</sub><sup>-</sup> and especially of CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> anions shows the presence of a competitive interaction with EG3 for the first coordination sphere position of lithium ions. The "fast" process is affected over the entire concentration range, the "slow" process shows individual behavior above ~0.4 M, as far as  $\tau_1^{-1}$ and  $\tau_{\text{II}}^{-1}$  are concerned. The values of  $\mu_{\text{I}}$  and  $\mu_{\text{II}}$  appear to be affected by the nature of the anion above  $C \simeq 0.2$  M.

The conclusion of this portion of the work is that in solvents of intermediate permittivity such as acetonitrile ( $\epsilon_{25} = 36.0$ ) but of relatively low donor number (DN = 14), the anion plays a significant competitive role when Li<sup>+</sup> interacts with an acyclic polyether. The situation is bound to become worse in terms of anion competition in solvents of lower permittivity or by eliminating the solvent in pure polyether liquid solutions of permittivity of the order of 10.

Acknowledgment. We thank the National Science Foundation for support through Grant No. CHE 8822333.

Registry No. EG3, 112-27-6; EG4, 112-60-7; Li, 7439-93-2.

Supplementary Material Available: Plots of S and P vs  $f(\theta)$  for LiClO<sub>4</sub> + EG3 in CH<sub>3</sub>CN (Figure 4) and for LiClO<sub>4</sub> + EG4 in CH<sub>3</sub>CN (Figure 5),  $\mu_{\rm I}$  vs  $\Gamma_{\rm I}^{-1}$  and  $\mu_{\rm II}$  vs  $\Gamma_{\rm II}^{-1}$  for LiClO<sub>4</sub> + EG3 in CH<sub>3</sub>CN (Figure 6), IR spectra of LiClO<sub>4</sub> with TG3, TG4, 12C4, and 15C5 in CH<sub>3</sub>CN (Figure 9), normalized absorbances per unit optical path length vs concentrations for four IR bands

# References and Notes

(1) Basic Mechanisms in the Action of Lithium; Emrich, H. M., Aldenhoff, J. B., Lux, H. D., Eds.; Excerpta Medica: Amsterdam, 1982.

pages). Ordering information is given on any current masthead

(2) Kaplan, M. L.; Reitman, E. A.; Holt, L. K.; Chandross, E. A. Solid State Ionics 1987, 25, 37.

(3) Eschmann, J.; Strasser, J.; Xu, M.; Okamoto, Y.; Eyring, E. M.; Petrucci, S. J. Phys. Chem. 1990, 94, 3908.

(4) Delsignore, M.; Maaser, H. E.; Petrucci, S. J. Phys. Chem. 1984, 88, 2405.

(5) Farrow, M. M.; Olsen, S. L.; Purdie, N.; Eyring, E. M. Rev. Sci. Instrum. 1976, 47, 657.

(6) Echegoyen, L.; Gokel, G. W.; Kim. S.; Eyring, E. M.; Petrucci, S. J. Phys. Chem. 1987, 91, 3854.

(7) Sato, H.; Kusumoto, Y., Chem. Lett. 1978, 635.

(8) For a review see: Farber, H.; Petrucci, S. Ultrasonic Absorption Spectrometry. In *The Chemical Physics of Solvation*; Dogonadze, R. R., et al., Eds.; Elsevier: Amsterdam, 1986; Part B. Chapter 9.

al., Eds.; Elsevier: Amsterdam, 1986; Part B, Chapter 9. (9) Eigen, M.; Winkler, R. In *Neurosciences, Second Study Program*; Schmidt, F. O., Ed.; Rockefeller University Press: New York, 1970; p 685.

(10) Cobranchi, D. P.; Garland, B. A.; Eyring, E. M.; Petrucci, S., unpublished data.

(11) Fuoss, R. M. J. Am. Chem. Soc. 1958, 80, 5059.

(12) Data for affinity in methanol for  $12C4 + Na^+$  give  $K_{\Sigma} = 29.3$  or  $K_{\Sigma} = 56.6$  (depending on the source) and for  $15C5 + Na^+$  give  $K_{\Sigma} = 1860$  (averaging all the reported data). From *Cation Binding by Macrocycles*, Inoue, Y., Gokel, G. W., Eds.; Marcel Dekker: New York, 1990; Chapter 1, pp 11-13.

(13) Takeda, Y. In Cation Binding by Macrocycles, Inoue, Y., Gokel, G. W., Eds.; Marcel Dekker: New York, 1990; Chapter 3, pp 146, 174.

(14) Tamm, K. In Dispersion and Absorption of Sound by Molecular Processes; Sette, D., Ed.; Academic Press: New York, 1963; p 192.

(15) For a discussion of this function see: Inoue, N.; Xu, M.; Petrucci, S. J. Phys. Chem. 1987, 91, 4628. See also ref 16.

(16) Maaser, H.; Xu, M.; Hemmes, P.; Petrucci, S. J. Phys. Chem. 1987, 91, 3047.

(17) Bright, D.; Truter, R. M. Nature 1970, 225, 176; J. Chem. Soc. 1970, 1544.

# Excited-State Interactions in Ligand-Bridged Chromophore–Quencher Complexes Containing Rhodium(III) and Ruthenium(II) Polypyridyl Units

# K. Kalyanasundaram,\* M. Grätzel, and Md. K. Nazeeruddin

Institut de Chimie Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland (Received: January 14, 1992)

This work consists of two parts: (i) photophysical studies on the mononuclear Rh(III)-polypyridyl complexes ([Rh(dpp)<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup>, [Rh(bpy)<sub>2</sub>(dpp)]<sup>3+</sup>, and [Rh(dpp)<sub>2</sub>(bpy)]<sup>3+</sup>) and (ii) an examination of the intramolecular excited-state interactions in the ligand-bridged complex, [(bpy)<sub>2</sub>Ru<sup>11</sup>-dpp-Rh<sup>III</sup>(bpy)<sub>2</sub>]<sup>5+</sup> using luminescence and transient absorption spectral studies. Over the temperature range 77-293 K, the lowest excited state of [Rh(dpp)<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup> is metal-centered (MC or d-d). At 77 K, mixed ligand complexes [Rh(bpy)<sub>2</sub>(dpp)]<sup>3+</sup> and [Rh(dpp)<sub>2</sub>(byy)]<sup>3+</sup> show strong emission from ligand-centered (LC or  $\pi$ - $\pi$ \*) and a very weak one from metal-centered excited states. Lifetime studies indicate the two low-lying excited states to be nonequilibrated in rigid alcoholic glasses. Only very weak ( $\pi,\pi$ \*) emission is observed in fluid solutions (293 K). Distinct transient absorption following short laser pulse excitation allows establishment of spectra and lifetimes of these excited states in fluid solutions at ambient temperature. Visible light excitation of the mixed metal Rh-dpp-Ru complex leads to formation of the luminescent charge-transfer (CT) excited state of Ru(II)-polypyridyl based chromophore. The very short lifetime of this excited state species in fluid solutions as compared to model compounds can be caused by enhanced nonradiative decay (mechanism I) or by intramolecular electron-transfer or energy-transfer quenching (mechanisms II and III, respectively) involving an adjacent Rh(III)-polypyridyl unit. Analysis of the quenching pathways using the electrochemical and photophysical data on the mixed metal and relevant mononuclear complexe leads to the conclusion that the quenching is primarily by electron transfer (mechanism II).

#### Introduction

There has been enormous progress in the past 2 decades in our understanding of the photophysics of transition metal polypyridyl complexes.<sup>1,2</sup> This has allowed extension of these studies to larger "supramolecular systems" tailored to have required properties.<sup>3</sup> Ligand-bridged polynuclear complexes constitute one such su-

pramolecular assembly, and these are currently receiving intense scrutiny. Progress in this area can lead to a better understanding of the chemistry of mixed valence species, communication through bridging ligands, antenna systems, and electron-transfer processes. We<sup>4</sup> and others<sup>5,6</sup> have been investigating the photophysical and redox properties of polynuclear polypyridyl complexes of the type