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Base-Free Asymmetric Transfer Hydrogenation of
Monoketones Catalyzed by a (NH),P,-Macrocyclic Fe'

Lorena De Luca and Antonio Mezzetti*

Abstract: The hydride isonitrile complex [FeH(CNCEt;)(1a)]BF4 (2)
containing a chiral P,(NH), macrocycle (1a), in the presence of 2-
propanol as hydrogen donor, catalyzes the base-free asymmetric
transfer hydrogenation (ATH) of prostereogenic ketones to alcohols
and the hemihydrogenation of benzils to benzoins, which contain a
base-labile stereocenter. Benzoins are formed in up to 83% isolated
yield with enantioselectivity reaching 95% ee. Ketones give the
same enantioselectivity observed with the parent catalytic system
[Fe(CNCEt;),(1a)] (3a) that operates with added NaO'Bu.

Asymmetric transfer hydrogenation (ATH) is experiencing a
golden age!" also thanks to the development of earth-abundant,
nontoxic catalysts of base metals.”) However, the base additives
that are required to activate the precatalyst® tend to limit
reaction scope. An eminent example are a-hydroxy ketones
benzoin (A) or, more generically, acyloins (Chart 1),
base-labile stereocenter easily racemizes upon heating or in
basic media,”! making the asymmetric hemihydrog
1,2-diketones a formidable challenge.®
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particular benzil, starting from our recently reported bis(isonitrile)
iron(ll) complexes [Fe(CNR)»(1)](BF4). (3) containing the chiral
P, macrocycles 1a and 1b (Chart 2), which catalyze the
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Chart 2. Macrocyclic iron(Il)/(NH),P, complexes

The base-free ATH of carbonyl functions has been
pioneered with iridium,”? and several achiral catalysts have
been reported.?® Yet, the base issue does not affect only
transfer hydrogenation,"® as also catalysts for the direct (H.)
hydrogenation (AH) of ketones require basic activation. In the
case of iron(ll), achiral BHs adducts catalyze the H, hydro-
genation of ketones without the addition of base.””! However,
due to the formation of alkoxide from BH, in the alcoholic
medium, this system may be unsuitable for base-sensitive
substrates. A notable exception is Noyori's base-free AH
ruthenium(ll) catalyst, which, however, as not been tested with
1,2-diphenylethane-1,2-diones (benzils).?® We report here the
first base-free Fe" catalyst for the ATH of ketones, the hydride
complex [FeH(CNR)(1a)]BF4 (2), which promotes the asymme-
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tric hemireduction of benzils to the corresponding benzoins with
up to 95% ee, and of monoketones with up to 99% ee.

Hydride 2 was prepared stepwise from [Fe(MeCN),(1a)]
(4a)?" by reaction with CNCEt; (1 equiv) and an excess of KBr
in dichloromethane at 50°C for 16 h (Scheme 1). The resulting
bromoisonitrile complex frans-[FeBr(CNCEt;)IBF, (5) was
isolated as orange solid after filtering off the salts and precipita-
tion with hexane (80% yield, see Supporting Information).?® The
inequivalent P atoms give a tight AX system in the *'P{'"H} NMR
spectrum (5 54.3 and 49.0, °Jpp=59.5 Hz, THF-ds), suggesting
that both phosphines are trans to amine. The trans configuration
is further supported by the similar 2Jp ¢ coupling constants (27.9
and 23.0 Hz) observed in the *'P{'"H} NMR spectrum of the "*C-
labeled isonitrile derivative [FeBr(**CNCEt;)(1a)]BF4 (5'), which
shows that the isonitrile ligand is cis to both phosphines.

|'4 | BFa)

PhiPo I N (1 equw)

//N/F_e N\\

= = KBr (excess)
P

k\v/i CH,Cl,

Ph
4 5 (L = CNCEty)

Scheme 1. Synthesis of bromoisonitrile complex 5

The bromoisonitrile complex 5 reacts with NaBHEt; (1
in THF to give cis-p-[FeH(CNCEts)(1a)]BF. (2) (Scheme 2).
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Scheme 2. Synthesis of hydride complex 2
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donor to benchmark it against the base-activated precatalyst
[Fe(CNR),(1a)|(BF4). (3a).?"¥ Therefore, the same substrate
amount, concentration, and catalyst loading were used. Beside
the absence of base, the only di ce was the small amount
of THF deriving from the preparati In fact, the hydride
complex 2 was prepared before each ¢ n by treating 5
with NaBHEt; (1 equiv) in THF (0.4
After stirring for 5 min, th
(12.5 mL) and heated to

diluted with 2-propanol
stirring for 10 min, the
ketones 6 (2.5 mmol).
yrred at 50°C and
ine the conversion to the
e enantioselectivity (by
substrate). The reaction
which the ATH reaction

The resulting light
sampled at regular

OH OH
©/\/\
(R)-7c (R)}-7d

ith acetophenone (6a), the hydride complex 2 is less active
e previously reported, closely related system that uses
itrile) complex 3a and NaO'Bu as added base (Table
. However, the enantioselectivity is the same
(98% ee). When base (NaO'Bu, 1 mol%) is added to the reaction
catalyzed by hydride 2, acetophenone is reduced at the same
rate observed with 3a/NaO'Bu, indicating that the base plays a
rol@in catalytic turnover, while the enantioselectivity is slightly
im

a

le 1. Asymmetric Transfer Hydrogenation of 6 to 7 with 2 and 3a.

'entry[a] Substr. Cat. Base t TOF®  Yield ee
(mol%) (h) (" (%) (%)

1 6a 2 0 1.0 1885 92 98
2 6a 2 1 0.5 3013 90 99
3 6a 3a 1 0.5 3426 93 98
4 6b 2 0 15 3209 93 98
5 6b 3a 1 0.5 8580 92 97
6 6¢c 2 0 0.2 3457 quant 98
7 6¢c 3a 1 0.5 9430 quant 99
8 6d 2 0 0.25 4690 81 64
9 6d 3a 1 0.25 8160 82 68

[a] Reaction conditions: Substrate 6 (2.5 mmol), catalyst 2 or 3a (2.5 umol,
0.1 mol%), 2-propanol, T=50°C. Results with catalyst 3a were obtained with
added NaO'Bu (0.025 mmol, 1 mol%) (data from ref. 21a). Conversion and
enantiomeric excess were determined by GC and HPLC, respectively (see
Supporting Information for details). [b] TOF at 15 min.
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The reaction of the electron-rich 6b is significantly slower
with catalyst 2 than with 3a/NaO'Bu, but the enantioselectivity
reaches 98% ee at reaction completeness (entries 4, 5).
Interestingly, the industrially relevant, electron-poor 6¢ was
converted quantitatively in a shorter time (15 min) with catalyst 2
than with 3a (30 min, entries 6, 7), albeit at the cost of marginally
lower enantioselectivity (98 and 99% ee, respectively). Both
catalysts reduce benzylideneacetone (6d) chemoselectively at
the carbonyl function with comparable enantioselectivity (64 and
68% ee, entries 8, 9).

Then, to take advantage of the base-free nature of ATH
catalyzed by hydride 2, benzils (8) were studied as substrates,
as their hemireduction gives o-hydroxyketones (Scheme 3),
which undergo rapid stereomutation in the presence of base.™
Preliminary experiments showed that 1,2-diphenylethane-1,2-
dione (8a) is reduced sluggishly to benzoin (9a) under the
conditions used for ketones 6 (Scheme 3, Table 1). However,
upon increasing the catalyst loading to 1 mol% and lowering the
substrate concentration to 0.05 M, benzoin (9a) was obtained
with 75% yield and 95% ee after 75 min (Table 2, entry 1). Only
traces of hydrobenzoin (10a) were detected after this reaction
time. Recrystallization from PrOH gave (S)-benzoin (9a) as a
single enantiomer (ee > 99.95%) with 61% overall yield.

2
(0] Z
TR (1 mol%)
L 0 PrOH
8a-8h 50 °C
(0.05M)

Scheme 3. ATH of benzils with catalyst 2

For the sake of comparison, 8a was hydrogenate
catalyst 3a in the presence of base (NaO'Bu, 10 equiv). After
reaction time of 15 min, racemic benzoin (9a) was formed (
along with a conspicuous amount of
(54% GC yield). After 30 min of rea
to (R,S)-10a was quantitative (by GC).
accelerates the ATH reaction as expected,
hydrogenation step occurs substrate
Supporting Information).”®!

nder

the ATH reaction by GC in
reaction was repeated and
of hydrobenzoins 10a-10h.
nzoins 9a-9h are given in
9b was enhanced by
9c-9h recrystallized only on standing
nrichment. The absolute configura-
to be S by the sign of the optical

stopped just b€
The isolated yiel
Table 2. The ena

rotation (see Suppor
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56% ee, probably because of its poor
s never homogeneous in 'PrOH at
50 °C). Inste bstituted analogues are sensitive to
electronic factors. Thus, 1,2-bis(3-methoxyphenyl)ethane-1,2-

dione (Bd)i the corresponding a-hydroxyketone 9d in good
)

solubilj

eld (67% d high enantioselectivity (87% ee) after 2 h of
ction tin®, whereas the reduction of its fluoro analogue 8e
eceded faster, but at the price of a lower enantioselectivity
ee). The ortho substituted 1,2-bis(2-fluorophenyl)ethane-
e (8f) gave benzoin 9f with lower yield and with 62% ee,
jer ortho substituents such as in 8g significantly

decreas enantioselectivity (41% ee).

Table 2. Asymmetric Transfer Hydrogenation with 2 under Base-free
conditions®

ent‘ Substr. t Yield of 9 ee of 9
_’ (min) (%) (%)
I 8a 75 70 (61) 95 (>99.95)°
' 2 8b 90 73 (65) 84 (93)°

3 8c 45 83 89
4 8d 120 55 87
5 8e 60 58 49
6 8f 30 39 62
7 8g 75 51 41
8 8h 45 56 56

[a] Reaction conditions: Substrate (0.625 mmol), catalyst 2 (6.25 umol, 1
mol%), 2-propanol 0.05 M, T=50°C. Yields are isolated, data in parentheses
are after recrystallization. The enantiomeric excess was determined by chiral
HPLC (see Supporting Information for details). [b] After single recrystallization
from hot 'PrOH.

The lability of the stereocenter of benzoins 9 in the presence
of base has been exploited in highly enantioselective dynamic
kinetic resolution (DKR) of benzils to hydrobenzoins for the
enantioselective transfer hydrogenation of benzil 8a to hydro-
benzoin 10a with HCOOH/NEt; catalyzed by [RuCl(Tsdpen)(n®-
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arene)].”! However, to the best of our knowledge, hydride 2 is
the first example of catalyst for the asymmetric hemihydro-
genation of benzils to benzoins. The use of a hydride complex
such 2, which neither needs base activation nor releases an
internal base during the reaction, is pivotal in order to perform
the asymmetric transfer hydrogenation of base-sensitive
substrates. Although mechanistic speculations are beyond the
scope of this paper, the similar performance of 2 and 3a/NaO'Bu,
in particular after addition of base to hydride 2, is striking and
may hint to the involvement of hydride 2, or of a closely related
species, in the catalytic cycle with both systems. A mechanistic
investigation is under way, and its results will be reported in due
time.

Keywords: Acyloins ¢ Iron « Base-free « Asymmetric transfer
hydrogenations Macrocyclic ligands
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