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Abstract: Highly stereoselective titanium-mediated aldol additions
of ethyl ketones derived from lactic acid to a-methyl-b-OTBDPS
chiral aldehydes are documented. One of these double stereodiffer-
entiating processes represents the key step of a straightforward and
efficient synthetic approach to the C1–C6 fragment of erythrono-
lides.
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Pioneering studies by Masamune and Heathcock revealed
the synthetic potentiality of a-hydroxy ketones for the ste-
reoselective construction of carbon–carbon bonds through
aldol type reactions.1 They paved the way for the develop-
ment of a plethora of asymmetric methodologies, and,
particularly, inspired our endeavors to devise new stereo-
selective titanium-mediated aldol transformations based
on chiral ketones derived from lactic acid.2,3 Accumulated
evidence so far points out that there are three identifiable
stereochemical determinants that influence the reaction
diastereoselectivity: (i) the hydroxyl protecting group, (ii)
the titanium Lewis acid used in the enolization step, and
(iii) the addition of a supplementary Lewis acid to the re-
action mixture.3 Furthermore, conventional wisdom states
that chirality on the aldehyde must also play an important
role.4–6 Therefore, we decided to evaluate double stereo-
differentiating titanium-mediated aldol reaction between
ketones 1–3 and chiral aldehydes 4 and ent-4 (see
Scheme 1), aiming to discover simple and highly stereo-
selective processes useful for the synthesis of polypro-
pionate-like natural products.

Given that the above-mentioned titanium-mediated aldol
methodologies3 only afford syn relationships, four stereo-
chemistries represented in Scheme 1 were expected to
predominate.

Chiral ketones, 1–3, and aldehydes, 4 and ent-4, were pre-
pared in enantiomerically pure form by well-known pro-
cedures.7,8 Aldol reactions were then carried out
according to the protocols previously reported.3 The re-
sults summarized in Scheme 2 show that most reactions
are highly stereoselective irrespective of the configuration
of the aldehyde (compare eq 1 and 2, 5 and 6, and 7 and 8
in Scheme 2), which confirms the high stereocontrol ex-
erted by ketones 1–3. It is worth mentioning that virtually
a single isomer is obtained in many cases (see eq 2, 5, 6,
and 7 in Scheme 2).9,10 Remarkably, an outstanding
stereocontrol is achieved both in matched and mis-
matched pairs based on ketone 2 when the process is car-
ried out in the presence of an additional equivalent of
TiCl4 (see eq 5 and 6 in Scheme 2). As expected, the less
selective process involves TiCl4-mediated aldol reaction
of benzyloxy ketone 2 and aldehyde 4, which gives the
mismatched Felkin adduct 7 in a poor diastereomeric ratio
(dr 70:30).4,11 With the exception of this case, appropriate
choice of the protecting group (ketones 1–3) and the eno-
lization procedure permits all the stereochemical relation-
ships described in Scheme 1 to be obtained. Therefore,
these double stereodifferentiating aldol reactions give ac-
cess to a wide array of enantiopure intermediates useful
for stereoselective syntheses.

Scheme 1

OTBDPS

PGO

OHO

2,4-syn-4,5-syn-5,6-anti

2 4 6
5

OTBDPS

PGO

OHO

2,4-anti-4,5-syn-5,6-syn

2 4 6
5

OTBDPS

PGO

OHO

2,4-syn-4,5-syn-5,6-syn

2 4 6
5

OTBDPS

PGO

OHO

2,4-anti-4,5-syn-5,6-anti

2 4 6
5

H OTBDPS

O

ent-4

O

PGO

1
2
3

PG: TBDMS
PG: Bn
PG: PMB

H OTBDPS

O

4

D
ow

nl
oa

de
d 

by
: N

Y
U

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



2128 J. G. Solsona et al. LETTER

Synlett 2004, No. 12, 2127–2130 © Thieme Stuttgart · New York

The utility of these double asymmetric processes has been
already demonstrated in the construction of the C18–C27
fragment of superstolide A through the stereoselective
reaction of ketone 3 and aldehyde 4 (see eq 7 in
Scheme 2).13 Looking for a more challenging case, we no-
ticed that the 4,5-syn-5,6-syn relationship (see Scheme 1)
present in aldol 10 (see eq 6 in Scheme 2) would be a key
function in accessing an advanced intermediate in the
synthesis of erythromicins A and B.

The well known antibiotic macrolides erythromicins A
and B have attracted much attention because of their im-
portant biological activity and their complex structure,
which contains most of the stereochemical motifs present
in the polypropionate-like natural products. Therefore, to-
tal syntheses of both macrolides and their corresponding
aglycones, namely erythronolides A and B, have become
one of the cornerstones in organic synthesis for the last
decades and have stimulated the development of new con-
cepts and reactions for acyclic stereocontrol.14,15

Many of the retrosynthetic analyses applied to the seco-
acids of erythronolides A and B choose the C6–C7 bond
as strategic disconnection, which confers to the C1–C6

fragment a crucial role in the overall strategy. Thus, it is
not surprising that methyl ketones such as that represented
in Scheme 3 have been considered as surrogates of ad-
vanced C1–C6 intermediates and have concentrated the
synthetic efforts of many groups.16

As already mentioned, a close inspection of the stereo-
chemical array embodied in such systems suggested that
three of their stereocenters might be easily installed
through a double asymmetric aldol process. Particularly,
ketone 13 (see Scheme 3) reported by Stork16a and
Yonemitsu16f attracted our attention because its synthesis
might rely on the highly stereoselective titanium-mediat-
ed aldol reaction represented in eq 6 of Scheme 2.

In fact, our retrosynthetic analysis anticipated that methyl
ketone 13 would be available from diol 14 after a protec-
tion-deprotection sequence and final oxidation. Eventual-
ly, stereoselective reduction of aldol 10 would render the
desired diol (see Scheme 3).

Thus, such a synthetic sequence should permit us to obtain
13 in a highly economic and straightforward manner
taking advantage of the substrate-controlled aldol process
that was previously developed.

Scheme 212 Reagents and conditions: (a) TiCl4 (1.1 equiv), i-Pr2NEt (1.1 equiv), CH2Cl2, –78 °C, 1.5 h; (b) (i-PrO)TiCl3 (1.1 equiv), i-Pr2NEt
(1.1 equiv), CH2Cl2, –78 °C, 1.5 h; (c) 4 (1.5 equiv), –78 °C, 45 min; (d) ent-4 (1.5 equiv), –78 °C, 45 min; (e) TiCl4 (1 equiv), 4 (1.5 equiv),
–78 °C, 45 min; (f) TiCl4 (1 equiv), ent-4 (1.5 equiv), –78 °C, 45 min.
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According to this approach, aldol 10 was routinely pre-
pared in 80% yield and 98:2 diastereomeric ratio on 5
mmol scale using 1.2 equivalents of aldehyde ent-4. Sur-
prisingly, subsequent stereoselective syn reduction
proved to be more elusive. Initial attempts based on
Narasaka–Prasad and zinc borohydride procedures17,18 af-
forded diol 14 in 95% yield but in a poor diastereomeric
ratio (dr 86:14 and 50:50, respectively). Fortunately, a
highly stereoselective reduction (82%, dr 96:4) was final-
ly achieved with diisobutylaluminium hydride at –78 °C
(see Scheme 4).19 Protection of the diastereomeric mix-
ture furnished pure isopropylidene acetal 15 in 90%
yield.20

Scheme 4 Reagents and conditions: (a) DIBALH, THF, –78 °C,
82%; (b) cat. PPTS, (MeO)2CMe2–CH2Cl2 1:1, r.t., 90%; (c) H2, 10%
Pd/C, EtOAc, r.t., 91%; (d) DMP, CH2Cl2, 0 °C, 97%.

Subsequently, removal of the benzyl group21 and Dess–
Martin periodinane oxidation of the resulting alcohol af-
forded the desired ketone 1322 in five steps and 51% over-
all yield from ketone 2.

In summary, highly stereoselective titanium-mediated al-
dol reactions based on chiral ketones derived from lactic
acid, 1–3, and a-methyl-b-OTBDPS chiral aldehydes, 4
and ent-4, have been documented. Making the most of
these double stereodifferentiating processes, a new ap-
proach to the construction of a fully protected C1–C6
fragment of erythronolides has been disclosed. The
stereoselective sequence proceeds over five steps in 51%
overall yield, which proves the synthetic potentiality of
the aforementioned methodology even in the case of a re-
luctant 4,5-syn-5,6-syn relationship.
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