N.M.R. Studies of Mixed Group 4/Group 6 Hydrides By C. GLIDEWELL, D. W. H. RANKIN AND G. M. SHELDRICK University Chemical Laboratory, Lensfield Road, Cambridge Received 11th November, 1968 The equilibria $(MH_3)_2E+H_2E\rightleftharpoons 2MH_3EH$ (E = S, Se, Te; M = Si, Ge) have been studied by 1H nuclear magnetic resonance spectroscopy. The spectra of the new compounds MH₃EH (E = Se, Te; M = Si: E = S, Se, Te; M = Ge) are reported, including satellites due to 29 Si, 77 Se and 125 Te at natural abundance. The 125 TeH coupling constant in H₂Te is also reported for the first time. Of the monosilyl derivatives of the group 6 hydrides, only SiH₃SH^{1, 2} has been prepared previously; none of the corresponding germyl compounds has been reported. We present here n.m.r. evidence for the existence of SiH₃SeH, SiH₃TeH, GeH₃SH, GeH₃SeH and GeH₃TeH. #### EXPERIMENTAL All manipulations were performed in conventional Pyrex vacuum systems with the rigorous exclusion of air and moisture. (SiH₃)₂Te was prepared by reaction of silyl bromide with Li₂Te in dimethyl ether at -96° C ³; (SiH₃)₂S, (SiH₃)₂Se and (GeH₃)₂S were prepared similarly. (GeH₃)₂Se and (GeH₃)₂Te were prepared from the corresponding silyl compounds by exchange with germyl bromide.4 H2S was prepared from CaS and acetic acid, HCl from NaCl and conc. H₂SO₄, and H₂Se from water and Al₂Se₃. All the compounds were purified by repeated fractional condensation in vacuo. A.R. chloroform was further purified by distillation from alumina which had been heated in vacuo. All the n.m.r. spectra were recorded as dilute solutions in chloroform using a Varian Associates HA 100 spectrometer and calibrated with a Muirhead-Wigan decade oscillator. Chemical shifts in the sulphide and selenide spectra were measured relative to chloroform and converted to the τ scale by adding 2.76; all shifts in the telluride spectra (including the above value for chloroform) were measured relative to tetramethylsilane. All the spectra were recorded at room temperature except where otherwise indicated. The sulphide and selenide mixtures were prepared from equimolar quantities of $(MH_3)_2E$ and H_2E (M = Si, Ge and E = S, Se) and the tellurium compounds by mixing equimolar quantities of (MH₃)₂Te and HCl in the n.m.r. tubes. ## RESULTS AND DISCUSSION ### CHEMICAL SHIFTS The MH₃—E (E = S, Se, Te) proton chemical shifts presented here follow the general trend⁷⁻¹⁰ of increasing τ value as groups 5, 6 and 7 of the periodic table are descended. This is probably related to an increase in diamagnetic anisotropy of the Si—E and Ge—E bonds, which is consistent with the larger differences for E=S, Se, Te in the germyl as opposed to silyl derivatives. This also accounts for the observed increases in EH proton chemical shift in the series $GeH_3EH \geqslant SiH_3EH > EH_2$ and -TeH > -SeH > -SH. In view of the influence of possible conformational differences (exemplified by the electron diffraction study of $(SiH_3)_2Se)^{11}$ it would have been difficult to predict the variations of $\tau(MH)_3$ in MH_3EH relative to $(MH_3)_2E$. TABLE 1.—CHEMICAL SHIFTS | | $\tau(MH_3)p.p.m.$ | τ(EH)p.p.m. | |--|--------------------|----------------------| | H_2S | | 9.25 ± 0.01 | | H ₂ Se | | 11.25 ± 0.01 | | H ₂ Te | | 15.50 ± 0.01^{a} | | SiH ₃ SH | 5.69 ± 0.01^{b} | 10.12 ± 0.01^{b} | | SiH ₃ SeH | 5.91 ± 0.01 | 12·28 ± 0·01 | | SiH ₃ TeH | 6.23 ± 0.01 | 17·46 ±0·01c | | GeH ₃ SH | 5.48 ± 0.01 | 10.25 ± 0.01 | | GeH ₃ SeH | 5.81 ± 0.01 | 12.52 ± 0.01 | | GeH ₃ TeH | 6.38 ± 0.01 | 17.44 ± 0.01 | | $(SiH_3)_2S$ | 5.65 ± 0.01 | ~ | | (SiH ₃) ₂ Se | 5.91 ± 0.01 | | | $(SiH_3)_2Te$ | 6.33 ± 0.01 | | | $(GeH_3)_2S$ | 5.33 ± 0.01 | | | (GeH ₃) ₂ Se ^d | 5.68 ± 0.01 | | | $(GeH_3)_2Te^d$ | 6.34 ± 0.01 | | (a) 15.31 ± 0.01 at -30° C; (b) ref. (2); (c) at -30° C; (d) ref. (4). ## COUPLING CONSTANTS The directly bonded ¹²⁵Te—H satellites could not be detected in H₂Te, HTeSiH₃ and HTeGeH₃ at room temperature, despite the observation of multiplets due to a long H...H coupling in the latter two molecules. The satellites could be observed TABLE 2.—COUPLING CONSTANTS | | ¹ <i>J</i> (29Si—H),Hz | ¹ <i>J</i> (E—H),Hz | ² <i>J</i> (E—H),Hz | ³ <i>J</i> (H−−H),Hz | |----------------------|------------------------|---------------------|--|---------------------------------| | H ₂ Se | | 59·4±0·5 | | Primarios | | H ₂ Te | | 59 ± 2^a | Ballery. | _ | | CH ₃ SH | | - | Property Control of the t | 7.6 ± 0.2^{b} | | SiH ₃ SH | 224 ± 1 | - | | $4.7\pm0.1c$ | | SiH ₃ SeH | 225 ± 1 | 51.0 ± 0.1 | 15.4 ± 0.2 | 5·0±0·1 | | SiH ₃ TeH | 224 ± 1 | 57·6±0·14 | 32.4 ± 0.2 | 4.8 ± 0.1 | | GeH ₃ SH | | | | $4 \cdot 1 \pm 0 \cdot 1$ | | GeH ₃ SeH | | 41.0 ± 0.1 | 14.4 ± 0.2 | 4.3 ± 0.1 | | GeH ₃ TeH | | 51.9 ± 0.3^{a} | 22.5 ± 0.3 | 4.4 ± 0.2 | | $(CH_3)_2Se$ | - | | $+10.5\pm0.2^{d}$ | | | $(CH_3)_2Te$ | | | -20.7 ± 0.2^{d} | * | | $(SiH_3)_2Se$ | 225 ± 1 | ****** | 14.9 ± 0.2 | | | $(SiH_3)_2Te$ | 224 ± 1 | | $27 \cdot 4 \pm 0 \cdot 2$ | | | $(GeH_3)_2Se$ | | | 12.3 ± 0.1^{e} | | | $(GeH_3)_2Te$ | | | 19.4 ± 0.2^{e} | - | (a) at -30° C; (b) ref. (5); (c) ref. (2); (d) ref. (6); (e) ref. (4). in the spectra recorded at ca. -30° C, so we attribute their absence at room temperature to exchange of hydrogen atoms bonded to tellurium. Since 125 Te—H is exchanging with a large excess of hydrogen atoms bonded to (effectively) non-magnetic tellurium, which have a different "effective chemical shift", the satellites should be much broader than the main resonance, as observed in H_2 Se¹²; at room temperature the mean lifetimes of the Te—H bonds must be intermediate between the values required for collapse of 125 Te—H coupling ($J\sim60$ Hz) and H...H coupling ($J\sim4$ Hz). McFarlane⁶ has shown that the reduced ⁷⁷Se...H and ¹²⁵Te...H coupling constants in $(CH_3)_2$ Se and $(CH_3)_2$ Te are positive (relative to $J(^{13}CH)$); the relative values for $J(^{77}$ Se...H) in $(CH_3)_2$ Se, $(CH_3)_2$ Se₂ and $(CH_3)_3$ Se⁺I⁻ were consistent with a model¹³ dominated by changes in hybridization of the selenium, and not by changes in effective nuclear charge.¹⁴ The observed bond angles in $(SiH_3)_2$ Si¹⁵ and $(SiH_3)_2$ Se¹¹ provide no evidence for " $(p \rightarrow d)$ π -bonding", but not do preclude " $(s \rightarrow d)\sigma$ -bonding" from E to Si, which we tentatively invoked¹⁶ to account for the Fig. 1.—Diagram (not to scale) of n.m.r. spectrum of equilibrium mixture of (GeH₃)₂Se+H₂Se ≈2GeH₃SeH weak base strength and poor nucleophilic character of $(SiH_3)_3P$ relative to $(CH_3)_3P$. This mechanism for an increase in s character (on E) in the bonding accounts for the observation that all the values of $| {}^1J(EH) |$ and $| {}^2J(E...H) |$ reported here are greater in the silyl than in the corresponding methyl or germyl compounds, and enables the prediction to be made that the corresponding reduced coupling constants will be positive in the silyl compounds. ### EQUILIBRIUM CONSTANTS Whereas the $(SiH_3)_2S$ and H_2S mixture required several weeks to come to equilibrium, and the $(GeH_3)_2S$ and H_2S mixture several days, the selenides and tellurides had reached equilibrium within a few hours. The values obtained for the equilibrium constant K were: 0.3, 0.5, $0.9((H_3Si)_2S$,Se,Te) and 0.35, 0.6, 0.95 ($(GeH_3)_2S$,Se,Te resp.) (all estimated errors ± 0.1), where K is defined by $$K = [MH_3EH]^2/[(MH_3)_2E][H_2E]$$ These values are approximate due to difficulties in integrating the n.m.r. multiplets; they are significantly less than the random value of 4, and exhibit the consistent trends K(Ge) > K(Si) and K(Te) > K(Se) > K(S). However, H-bonding by the chloroform solvent would favour the formation of stronger bases, hence, at least in part, accounting for these observations. We are grateful to Mr. B. Crysell for recording the spectra. D.W.H.R. thanks the Science Research Council for a maintenance grant; C.G. thanks Clare College, Cambridge for a Denman Baynes research studentship. - ¹ H. J. Eméleus, A. G. MacDiarmid and A. G. Maddock, J. Inorg. Nucl. Chem., 1955, 1, 194. - ² C. Glidewell, J. Inorg. Nucl. Chem., in press. - ³ H. Bürger and U. Goetze, Inorg. Nucl. Chem. Letters, 1967, 3, 549. - ⁴ S. Cradock, E. A. V. Ebsworth and D. W. H. Rankin, to be published. - ⁵ K. Krynicki and J. G. Powles, *Proc. Phys. Soc.*, 1964, 83, 983. - ⁶ W. McFarlane, Mol. Phys., 1967, 12, 243. - ⁷ E. A. V. Ebsworth and J. J. Turner, J. Phys. Chem., 1963, 67, 805. - ⁸ E. A. V. Ebsworth and G. M. Sheldrick, Trans. Faraday Soc., 1966, 62, 3282. - ⁹ S. Cradock, E. A. V. Ebsworth, G. Davidson and L. A. Woodward, J. Chem. Soc. (A), 1967, 1229. - E. A. V. Ebsworth, D. W. H. Rankin and G. M. Sheldrick, J. Chem. Soc. A, 1968, 2828. - ¹⁰ E. A. V. Ebsworth, S. G. Frankiss and A. G. Robiette, J. Mol. Spectr., 1964, 12, 299. - ¹¹ A. Almennigen, L. Fernholt and H. M. Seip, Acta Chem. Scand., 1968, 22, 51. - ¹² E. A. V. Ebsworth and G. M. Sheldrick, Trans. Faraday Soc., 1967, 63, 1071. - ¹³ J. N. Shoolery, J. Chem. Phys., 1959, 31, 1427. - ¹⁴ D. M. Grant and W. M. Litchman, J. Amer. Chem. Soc., 1965, 87, 3994. - ¹⁵ A. Almennigen, K. Hedberg and R. Seip, Acta Chem. Scand., 1963, 17, 2264. - ¹⁶ E. A. V. Ebsworth, C. Glidewell and G. M. Sheldrick, J. Chem. Soc. A, 1969, 352.