Electric Discharge Reactions of Silane and Germane with Some Volatile **Group VI Species**

By J. E. Drake* and C. Riddle, Department of Chemistry, University of Windsor, Windsor, Ontario, Canada

The action of a silent electric discharge on equimolar mixtures of the following hydrides: SiH_4/H_2S , SiH_4/H_2Se , GeH₄/H₂S, GeH₄/H₂Se, SiH₄/GeH₄/H₂S, SiH₄/GeH₄/H₂Se, SiH₄/MeSH, and GeH₄/MeSH, has been investigated. Analysis of the reaction products by ¹H n.m.r. and mass spectroscopy indicates the formation of the previously known mixed and ternary hydrides: SiH₃SH, (SiH₃)₂S, SiH₃SeH, (SiH₃)₂Se, GeH₃SH, (GeH₃)₂S, GeH₃SeH, (GeH₃)₂Se, MeSSiH₃, and MeSGeH₃. The new compounds SiH₃SGeH₃ and SiH₃SeGeH₃ are obtained from discharges of the ternary mixtures.

THE electric discharge has been used in the synthesis of the higher binary silanes and germanes, $M_n H_{2n+2}$ (M = Si or Ge; n = 2-9)¹ and in the preparation of mixed Group IV-Group IV hydrides, e.g. SiH₃GeH₃,² or Group IV-Group V hydrides, e.g. GeH₃AsH₂.³ Å degree of specificity has been claimed for some of these reactions indicating a favoured reaction path.^{4,5} Mercury-sensitised photolysis of hydride mixtures has also been used to produce mixed species via radical combination.6 Sulphur atoms, produced in a discharge from COS or CS_2 , insert into $\equiv C-H$ bonds to give $\equiv C-SH.^7$

1 S. D. Gokhale, J. E. Drake, and W. L. Jolly, J. Inorg. Nuclear Chem., 1965, 27, 1911.

² E. J. Spanier and A. G. MacDiarmid, Inorg. Chem., 1963, 2, 215. ³ J. E. Drake and W. L. Jolly, Chem. and Ind., 1962, 1470.

We report the result of subjecting mixtures of SiH₄ or GeH_4 with H_2S , MeSH, or H_2Se to an ozoniser-type silent electric discharge. The products were initially identified by ¹H n.m.r. spectroscopy and the results confirmed by i.r. and mass spectroscopy.

EXPERIMENTAL

Apparatus.—The experiments were carried out in a conventional Pyrex glass vacuum line fitted with greaseless

 S. D. Gokhale and W. L. Jolly, *Inorg. Chem.*, 1965, 4, 596.
 J. E. Drake and N. P. C. Westwood, *Chem. and Ind.*, 1969, 24.

⁶ G. A. Gibbon, Y. Rousseau, C. H. Van Dyke, and G. J. Mains, *Inorg. Chem.*, 1966, 5, 114. ⁷ O. P. Strausz and H. E. Gunning, J. Amer. Chem. Soc.,

1963, 85, 2349.

3135

stopcocks (Springham; Viton A diaphragm). The discharge unit ¹ consists of an ozoniser, following trap, surge bulb, and circulating pump (total volume 1900 ml). Series of 1 h discharges were run at 13 kV with the discharge tube maintained at 0°. After each run hydrogen was pumped off and the reactants returned to the discharge system after passage through a -95° trap which retained the products. No separation was attempted between runs involving MeSH because its volatility is similar to that of some of the products. Equimolar mixtures of gases were used such that the pressure in the discharge system was between 10-30 cm. As previous workers have reported,⁸ the discharge reaction was considerably 'quenched' at higher pressures, notably with SiH₄/H₂S mixtures where 20 cm was the optimum pressure. On average each discharge produced ca. 10% decomposition of starting materials.

The products were identified principally from their ¹H n.m.r. spectra. The chemical shift (all values quoted are in p.p.m. to low field of tetramethylsilane) and spin-spin coupling data are well documented and characteristic, especially for the 'mixed' hydrides. I.r. and mass spectroscopy were used to confirm the interpretation of the n.m.r. spectra. For the Group IV hydrides $M_x H_{2x+2}$ and $M_xM'_yH_{2(x+y)+2}$ (M = Si or Ge; M' (\neq M) = Si or Ge), and the Group VI compounds Me_2S_x (x = 1 or 2) which have overlapping resonance regions in the n.m.r. spectrum, mass spectroscopy was particularly useful.

The ¹H n.m.r. spectra were recorded in sealed tubes (ca. 2 mm o.d.) on a Jeol C60HL high-resolution spectrometer. I.r. spectra were recorded on Beckman IR 10 and IR 12 spectrometers in gas cells (5 cm path-length) fitted with potassium bromide windows and mass spectra on an AEI MS 10 instrument.

Starting Materials.-Commercial silane and germane were used after non-condensable gas (hydrogen) had been pumped off at -196° . Hydrogen sulphide ⁹ and selenide ¹⁰ were prepared from the hydrolysis of freshly made aluminium sulphide and selenide alloy, and purified by repeated distillation on the vacuum line. Commercial methanethiol was used as supplied.

Discharge Reactions.— SiH_4/H_2S . The products from a series of 1 h discharges were analysed from their ¹H n.m.r. spectra which showed resonances at 3.25 (Si₂H₆), 3.3 $(\mathrm{Si_3H_8}),^{11}$ 3·3 and 3·4 (iso- and n-Si_4H_{10}),^{12} 4·29 and -0.07(SiH₃SH), and 4.35 p.p.m. [(SiH₃)₂S].¹³ The ratio of higher silanes to sulphur-containing product species was ca. 1:1.

The mass spectrum gave parent peaks at m/e 64 (Si₆H₆), 96 [(SiH₃)₂S], and 126 (Si₄H₁₀) (all unipositive ions).

 SiH_4/H_2Se . The products from a series of 1 h discharges gave resonances in the ¹H n.m.r. spectrum at 4.10 and -2.33p.p.m. (SiH₃SeH), and 4·10 p.p.m. [(SiH₃)₂Se],¹³ as well as those attributable to the higher silanes Si_2H_6 , Si_3H_8 , Si₄H₁₀.^{11,12} The spectrum of ²⁹SiH₃SeSiH₃', the species observed in the 29Si satellite region of (SiH₃)₂Se, displayed long-range, H–(Si–Se–Si–)H', coupling ($|J_{\rm HH'}| 0.63$ Hz) with

⁸ J. Simpson, personal communication.
⁹ A. Tian and S. Aubanel, *Compt. rend.*, 1942, 1, 97.

 G. R. Waitkins and R. Shutt, Inorg. Synth., 1946, 2, 183.
 E. A. V. Ebsworth and J. J. Turner, Trans. Faraday Soc., 1964, 61, 256.

S. D. Gokhale and W. L. Jolly, *Inorg. Chem.*, 1964, 3, 946.
 C. Glidewell, D. W. H. Rankin, and G. M. Sheldrick, *Trans.*

Faraday Soc., 1969, 66, 1409.
 ¹⁴ E. A. V. Ebsworth, S. G. Frankiss, and A. G. Robiette, J. Mol. Spectroscopy, 1964, 12, 299.

¹⁵ J. E. Drake and W. L. Jolly, J. Chem. Soc., 1962, 2807.

each satellite peak appearing as a 1:3:3:1 quartet. The ratio of higher silanes to selenium-containing product species was *ca.* 1:1.

The mass spectrum gave parent peaks at m/e 64 (Si₂H₆), 95 (Si₃H₈), 113 (SiH₃SeH), and 126 (Si₄H₁₀).

 GeH_4/H_2S . The products from a series of 1 h discharges gave resonances in the ¹H n.m.r. spectrum at 3.24 (Ge₂H₆),¹⁴ 3.3 (Ge₃H₈), 3.3 and 3.4 (iso- and n-Ge₄H₁₀), 15 4.50 and -0.29 (GeH₃SH), and 4.64 p.p.m. [(GeH₃)₂S].^{13,16} The ratio of higher germanes to sulphur-containing product species was ca. 4: 1.

 GeH_4/H_2Se . The products from a series of 1 h discharges gave resonances in the ¹H n.m.r. spectrum at 4.15 and -2.38 p.p.m. (GeH₃SeH), and 4.29 p.p.m. [(GeH₃)₂Se],^{13,17} as well as those attributable to Ge_2H_6 ¹⁴ and Ge_3H_8 .¹⁵ The ratio of higher germanes to selenium-containing product species was ca. 5: 1.

 $SiH_4/GeH_4/H_2S$. In addition to the products observed from the discharges on SiH₄/H₂S and GeH₄/H₂S mixtures, the ¹H n.m.r. spectrum contained a complex feature at 3.0-3.5 p.p.m. attributable to silylgermanes 18 and two related 1:3:3:1 quartets, $(|J_{HH'}| 0.80$ Hz), of equal intensity at 4.40 and 4.64 p.p.m. (SiH_3SGeH_3').19 The ratio of higher and mixed Group IV hydrides to sulphurcontaining product species was ca. 2:1.

The following silylgermanes were identified by mass spectroscopy: SiH_3GeH_3 (m/e 111), Si_2GeH_8 (m/e 142), $SiGe_2H_8$ (m/e 189), and trace amounts of Si_xGe_{4-x} . Parent peaks for the other Group IV hydride products were observed at m/e 158 (Ge₂H₆), 236 (Ge₃H₈), 64 (Si₂H₆), 95 (Si₃H₈), and 126 (Si₄H₁₀).

SiH₄/GeH₄/H₂Se. In addition to the products observed from the discharges on SiH₄/H₂Se and GeH₄/H₂Se mixtures, the ¹H n.m.r. spectrum contained a complex feature at $3 \cdot 0 - 3 \cdot 5$ p.p.m. (silylgermanes) ¹⁸ and two related 1 : 3 : 3 : 1quartets, $(|J_{\rm HH'}| 0.73 \text{ Hz})$, of equal intensity at 4.15 and 4.25 p.p.m. (SiH₃SeGeH₃').¹⁹ The ratio of higher and mixed Group IV hydrides to selenium-containing product species was ca. 3: 1.

The mass spectrum gave parent peaks for the Group IV hydrides Ge_2H_6 , Ge_3H_8 , Si_2H_6 , Si_3H_8 , Si_4H_{10} , $SiGeH_6$, Si₂GeH₈, and Si₂Ge₂H₈.

MeSH. The major product of the discharge of MeSH was shown by ¹H n.m.r. analysis to be Me₂S₂ containing some Me₂S (singlets at 2.27 and 2.01 p.p.m. respectively ²⁰). The mass spectrum gave peaks at m/e 94 (Me₂S₂), 79 (MeS_2) , 64 (S_2) , 47 (MeS) attributable to Me_2S_2 , and at m/e 62, attributable to Me₂S.

 $SiH_4/MeSH$. The products from a series of 1 h discharges were analysed in the ¹H n.m.r. which showed related quartets ($|J_{\rm HH'}|$ 0.45 Hz) of equal intensity at 2.08 and 4.30 p.p.m. attributable to MeSSiH₃',²¹ and peaks attributable to Me_2S , Me_2S_2 ,²⁰ the higher silanes,^{11,12} and (SiH₃)₂S.¹³ The ratio of higher silanes to sulphur-containing silicon products was ca. 1:5.

The mass spectrum gave parent peaks at m/e 62 (Me₂S),

- ^t 16 J. E. Drake and C. Riddle, J. Chem. Soc. (A), 1968, 2709. ¹⁷ J. E. Drake and C. Riddle, J. Chem. Soc. (A), 1969, 1573. ¹⁸ E. J. Spanier and A. G. MacDiarmid, J. Inorg. Nuclear
- Chem., 1969, 31, 2976.

J. E. Drake and C. Riddle, Inorg. Nuclear Chem. Letters, 1970, in the press.

- ²⁰ Humble Catalogue of NMR Spectra, Humble Oil Co., Baytown, Texas, pp. 411, 416.
- ²¹ B. Sternbach and A. G. MacDiarmid, J. Inorg. Nuclear Chem., 1961, 23, 225.

64 (Si_2H_6), 79 (MeSSiH_3), 94 (Me_2S_2), 96 [(SiH_3)_2S], and 126 (Si_4H_{10}).

GeH₄/MeSH. The ¹H n.m.r. spectra of the products from a series of 1 h discharges were analysed and showed related quartets, ($|J_{HH'}| 0.60 \text{ Hz}$), of equal intensity at 2.15 and 4.65 p.p.m. attributable to MeSGeH₃',²² and peaks attributable to Me₂S, Me₂S₂,²⁰ higher germanes,^{14,15} and (GeH₃)₂S.^{13,16} The ratio of higher germanes to sulphurcontaining germanium products was ca. 1: 2.

 $|J_{\rm HH'}|$ values of related hydrides (Hz)

MeSCH ₃ '	0.30 a	SiH _s SCH _s '	0·45 ^b
MeSSiH ₃ '	0.45 b	SiH _s SSiH _s '	0·70 c
MeSGeH ₃ '	0.60 d	SiH _s SGeH _s '	0·80
MeSeCH ₃ '	0.15 e	SiH _s SeGeH _s '	0·73
MeSeCH ₃ ' SiH ₃ SeSiH ₃ '	0.15 ° 0.63	SiH ₃ SeGeH ₃ '	0.73

 ${\rm GeH_3SGeH_3'}$ and ${\rm GeH_3SeGeH_3'}$ not observed

^a N. Van Meurs, Spectrochim. Acta, 1963, **19**, 1695. ^b Ref. 21. ^c E. A. V. Ebsworth and J. J. Turner, J. Chem. Phys., 1962, **36**, 2628. ^d Ref. 22. ^e H. Dreeskamp and G. Pfisterer, Mol. Phys., 1968, **14**, 295.

DISCUSSION

When silane and germane react with hydrogen sulphide, hydrogen selenide, and methanethiol under the stimulation of a high-voltage ozoniser-type silent electric discharge, considerable breakdown occurs although not to the same extent as in Group IV-Group V hydride mixtures under analogous conditions (ca. 10% compared with ca. 25% after 1 h).^{3,23}

Mixed hydride species are formed, viz. MH_3EH and $(MH_3)_2E$ from MH_4/H_2E mixtures (M = Si or Ge; E = S or Se), as well as higher binary hydrides, M_nH_{2n+2} (n = 2-4) in amounts detectable by ¹H n.m.r. spectroscopy. Reaction mechanisms in these types of discharges are not well understood. However, the product distribution indicates that the breaking of an M-H bond may be the most important initial step. Subsequent reactions (1) and (2) would then account for the con-

$$\cdot MH_3 + H_2E \longrightarrow MH_3EH + H \cdot$$
 (1)

$$\cdot MH_3 + MH_4 \longrightarrow MH_3MH_3 + H \cdot$$
 (2)

siderable amounts of MH_3EH and M_2H_6 observed. Similarly, the low yield of H_2E_2 is rationalised. (Alternatively, M-H cleavage could give MH_2 followed by insertion into H_2E or MH_4 .) The formation of the higher binary hydrides results from reaction of $\cdot MH_3$ with M_2H_6 etc., but it is probable that $(MH_3)_2E$ species are not principally direct discharge products. The equilibrium reactions (3) are well known and as soon as

$$2\mathrm{MH}_{3}\mathrm{EH} \Longrightarrow (\mathrm{MH}_{3})_{2}\mathrm{E} + \mathrm{H}_{2}\mathrm{E} \qquad (3)$$

 MH_3EH is formed this equilibrium will be established. Similarly, in the systems, $SiH_4/GeH_4/H_2E$, the formation of the 'quarternary' species, SiH_3EGeH_3 results mainly from condensation of SiH_3EH and GeH_3EH reaction (4).

$$SiH_3EH + GeH_3EH \implies SiH_3EGeH_3 + H_2E$$
 (4)

Thus the ¹H n.m.r. spectrum initially shows strong signals for SiH₃EH and GeH₃EH. Sequential recording of the spectrum however, indicates that these signals decrease in intensity as those due to $(SiH_3)_2E$, $(GeH_3)_2E$, and SiH₃EGeH₃ increase.

In the $MH_4/MeSH$ reactions, the principal process involves the breaking of the S-H bond, because the decomposition of the MH_4 species is considerably quenched and when MeSH is discharged alone, considerable amounts of Me_2S_2 are formed, reaction (5).

$$MeS \cdot + MeSH \longrightarrow Me_2S_2 + H \cdot$$
 (5)

There is a high yield of $MeSMH_3$ as expected for reaction (6), while $MeMH_3$ and M_2H_6 species are produced

$$MeS' + MH_4 \longrightarrow MeSMH_3 + H'$$
(6)

in low yield.

The long-range coupling constant, J [H-(M-E-M'-)H], has now been observed in all the known MH₃EM'H₃ species (M = C, Si, or Ge; M' = C or Si; E = S or Se). Its absolute value is observed to increase in the series MH₃-EM'H₃ for different M in the order C < Si < Ge (Table).^{19,22} No value has been obtained from the digermyl compounds, (GeH₃)₂E, as germanium lacks a suitable isotope to exhibit such coupling in a satellite spectrum. Long-range coupling is not observed for E=O and it is suggested that the *d* orbitals of sulphur and selenium allow the transmission of the coupling, a mechanism unavailable to oxygen.

We thank the National Research Council of Canada for financial assistance.

[0/1087 Received, June 25th, 1970]

- ²² J. T. Wang and C. H. Van Dyke, Chem. Comm., 1967, 612.
- ²³ J. Simpson, Ph.D. Thesis, Southampton University, 1967.