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Abstract: A simple and highly efficient synthetic route to three ho-
mologous azidoamino acids, starting from inexpensive, commer-
cially available, protected natural amino acids is reported. The
products can be used to introduce bioorthogonal handles into pro-
teins.
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The creation of proteins that incorporate non-canonical
(unnatural) amino acids bearing side chains that can be se-
lectively modified has been the focus of increasing
amounts of research over the past decade. A number of
different methods have been devised including the use of
the amber suppression codon,1 the use of N-terminal mod-
ifying enzymes2 and of auxotrophic bacteria [typically E.
coli B834(DE3)] to introduce alkynyl,3 azide4 or ketone5

bearing amino acids that can be used as handles for further
modification via bio-orthogonal ‘click chemistry’.6 The
azido-group has proved to be the most versatile of these
because it can be used directly as an IR probe,7 it can se-
lectively undergo Huisgen [3+2] cycloadditions that can
be either copper(I)-catalysed (with an alkyne functiona-
lised probe),8 or metal-free (with a strained cyclooctyne
functionalised probe),9 and can react in a Staudinger reac-
tion with a phosphine-bearing probe.10 In a collaborative
project, the groups of Tirrell and Bertozzi were the first to
demonstrate that an azide in the form of L-azidohomo-
alanine (L-Aha, 2, Figure 1) could substitute for methion-
ine as a substrate for E. coli methionyl tRNA-synthetase
(MetRS) and be incorporated globally in place of me-
thionine in the E. coli outer-membrane protein OmpC
when expressed in auxotrophic E. coli.4 In this study it
was found that the MetRS adds L-Aha with a catalytic ef-
ficiency (kcat/KM) that was ~1/400th that of L-Met. 

Later it was shown that other L-azidoamino acids such as:
L-azidoalanine (1), L-azidonorvaline (3) (Figure 1) and L-
azidonorleucine (not shown), could be incorporated into
OmpC, albeit with much lower efficiency than L-Aha
(2).11 The development of an increasing variety of meth-
ods with which to incorporate azidoamino acids such as 2
into proteins has generated the need for a facile and cost

effective method of preparing these compounds on larger
scales (1–10 g). In this report we describe a generic and
robust route to L-azidoalanine (1), L-azidohomoalanine
(2), and L-azidonorvaline (3) from widely available, low
cost, protected a-amino acids. This route would also be
applicable to the synthesis of L-azidonorleucine from
commercially available N-Boc-L-norleucine with an addi-
tional esterification step. There have been a number of
previous syntheses of L-azidoalanine (1),12 L-azido-
homoalanine (2)13,14,15 and L-azidonorvaline (3)16 that
give both the protected and fully deprotected amino acids.
Of those that give the deprotected azidoamino acids, a
number suffer from disadvantages such as starting materi-
als that are either expensive or not readily available, the
required use of hazardous reagents, or involve either a
large number of transformations, or have a poor overall
yield. 

Tirell and co-workers13,14 have recently reported two syn-
theses for L-Aha (2) – the first being a modified version of
Mangold’s original synthesis.15 Although starting from a
readily available amino acid derivative (Boc-L-homo-
serine), this protocol uses a rather complicated protecting
group strategy that requires the use of diazomethane, a
hazardous reagent that requires specific handling and
glassware. The alternative, improved synthesis they de-
scribed avoids this step but starts from expensive Boc-
Dab (Boc-diaminobutyric acid) and employs triflic azide,
a relatively unstable reagent that has to be freshly pre-
pared prior to use. For the preparation of larger quantities
of proteins incorporating L-azidohomoalanine (2), Tirrell
et al. have used a-amino-g-butyrolactone17 to give rac-
azidohomoalanine in reasonable quantities.15 Whilst only
the L-enantiomer was incorporated into the proteins of in-
terest, the effect of the D-enantiomer on cell growth and
protein production was not reported, but could potentially
be detrimental.

Figure 1 Three non-canonical azidoamino acids: L-azidoalanine
(1), L-azidohomoalanine (2) and L-azidonorvaline (3)
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We proposed that the three homologous L-azidoamino
acids 1, 2 and 3 could be prepared starting from inexpen-
sive, commercially available, protected amino acids em-
ploying a common synthetic scheme that avoids handling
highly dangerous or toxic compounds such as diaz-
omethane, or the use of the unstable triflic azide.

Initially, we developed the synthetic route shown in
Scheme 1 for the synthesis of L-Aha (2) as this has been
shown to be by far the most translationally active me-
thionine surrogate4,5 and, consequently, the azidoamino
acid most widely employed. Starting from N-Boc- and O-
benzyl-protected L-aspartic acid 4, the g-carboxylic acid
was reduced directly via the mixed anhydride formed with
isobutyl chloroformate.18 This step was carried out on a
multigram scale to give 5 reproducibly in quantitative
yield and further purification was not required. The result-
ing alcohol 5 was then subjected to a standard mesylation
reaction using mesylchloride and triethylamine to give
mesylate 6.19 The mesylate function was then displaced
with an azide group by treatment with sodium azide in
DMF at slightly elevated temperature to give protected
azide 7 in an excellent yield of 92%.20 An initial attempt
to deprotect the amino acid in two subsequent steps using
an acid-mediated deprotection of the Boc group followed
by a basic cleavage of the benzyl ester did result in the free
amino acid, however, due to the additional purification
step, the overall yield was reduced.

Scheme 1 Synthesis of L-azidohomoalanine (L-Aha, 2)

We therefore applied a global deprotection strategy em-
ploying boron tribromide21 that afforded 2 in quantitative
yield after crystallisation; an overall yield of 86% from
4.22 The purity of the material obtained was ~98% (the
major by-product resulting from a displacement of the
azide group with a bromide), which could be enhanced to

>99% by either recrystallisation from ethanol/water or
ion-exchange chromatography.5

After establishing a viable route for L-Aha (2), we then
turned our attention to the synthesis of the homologues 1
and 3 as single enantiomers. Applying the same strategy
starting from either N-Boc- and O-benzyl-protected L-
serine 9 or protected L-glutamic acid 8, which are both
low cost, commercially available compounds, the expect-
ed products 1 and 3 could be obtained in high overall
yields of 68% (over three steps) and 62% (over four
steps), respectively (Scheme 2).

Scheme 2 Synthesis of L-azidoalanine (1) and L-azidonorvaline (3)

It is noteworthy that, after reduction of the protected
glutamic acid 8, purification of the alcohol 10 by column
chromatography was necessary, presumably to remove
traces of boron-based compounds and any aldehyde
present. If the alcohol is subjected to the mesylation reac-
tion without prior purification, the  yield of the mesylation
reaction decreases from 81% to 42%.

In conclusion, a facile and robust synthesis of the three ho-
mologous azidoamino acids: L-azidoalanine (1), L-azido-
homoalanine (2) and L-azidonorvaline (3), from
inexpensive, commercially available starting materials
has been developed. The synthetic route is high-yielding,
applicable to all three compounds and could also be ap-
plied to the synthesis of L-azidonorleucine without modi-
fication. This route does not require highly hazardous or
unstable reagents and so could be performed on multi-
gram scales when large quantities of azidoamino acid
bearing protein were required for further selective modifi-
cation. The introduction of L-Aha (2) into proteins also al-
lows mild fragmentation of peptides and proteins at
specific positions.
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