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Abstract: A simple and highly efficient synthetic route to three ho-
mologous azidoamino acids, starting from inexpensive, commer-
cially available, protected natural amino acids is reported. The
products can be used to introduce bioorthogonal handles into pro-
teins.
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The creation of proteins that incorporate non-canonical
(unnatural) amino acids bearing side chains that can be se-
lectively modified has been the focus of increasing
amounts of research over the past decade. A number of
different methods have been devised including the use of
the amber suppression codon,! the use of N-terminal mod-
ifying enzymes? and of auxotrophic bacteria [typically E.
coli B834(DE3)] to introduce alkynyl,? azide* or ketone®
bearing amino acids that can be used as handles for further
modification via bio-orthogonal ‘click chemistry’.® The
azido-group has proved to be the most versatile of these
because it can be used directly as an IR probe,’ it can se-
lectively undergo Huisgen [342] cycloadditions that can
be either copper(I)-catalysed (with an alkyne functiona-
lised probe),® or metal-free (with a strained cyclooctyne
functionalised probe),9 and can react in a Staudinger reac-
tion with a phosphine-bearing probe.!? In a collaborative
project, the groups of Tirrell and Bertozzi were the first to
demonstrate that an azide in the form of L-azidohomo-
alanine (L-Aha, 2, Figure 1) could substitute for methion-
ine as a substrate for E. coli methionyl tRNA-synthetase
(MetRS) and be incorporated globally in place of me-
thionine in the E. coli outer-membrane protein OmpC
when expressed in auxotrophic E. coli.* In this study it
was found that the MetRS adds L-Aha with a catalytic ef-
ficiency (k.,/Ky;) that was ~1/400th that of L-Met.

Later it was shown that other L-azidoamino acids such as:
L-azidoalanine (1), L-azidonorvaline (3) (Figure 1) and L-
azidonorleucine (not shown), could be incorporated into
OmpC, albeit with much lower efficiency than L-Aha
(2).!! The development of an increasing variety of meth-
ods with which to incorporate azidoamino acids such as 2
into proteins has generated the need for a facile and cost
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Figure 1 Three non-canonical azidoamino acids: L-azidoalanine
(1), L-azidohomoalanine (2) and L-azidonorvaline (3)

effective method of preparing these compounds on larger
scales (1-10 g). In this report we describe a generic and
robust route to L-azidoalanine (1), L-azidohomoalanine
(2), and L-azidonorvaline (3) from widely available, low
cost, protected a-amino acids. This route would also be
applicable to the synthesis of L-azidonorleucine from
commercially available N-Boc-L-norleucine with an addi-
tional esterification step. There have been a number of
previous syntheses of L-azidoalanine (1),'> L-azido-
homoalanine (2)'*'“!> and L-azidonorvaline (3)!° that
give both the protected and fully deprotected amino acids.
Of those that give the deprotected azidoamino acids, a
number suffer from disadvantages such as starting materi-
als that are either expensive or not readily available, the
required use of hazardous reagents, or involve either a
large number of transformations, or have a poor overall
yield.

Tirell and co-workers'*'* have recently reported two syn-
theses for L-Aha (2) — the first being a modified version of
Mangold’s original synthesis.!> Although starting from a
readily available amino acid derivative (Boc-L-homo-
serine), this protocol uses a rather complicated protecting
group strategy that requires the use of diazomethane, a
hazardous reagent that requires specific handling and
glassware. The alternative, improved synthesis they de-
scribed avoids this step but starts from expensive Boc-
Dab (Boc-diaminobutyric acid) and employs triflic azide,
a relatively unstable reagent that has to be freshly pre-
pared prior to use. For the preparation of larger quantities
of proteins incorporating L-azidohomoalanine (2), Tirrell
et al. have used a-amino-y-butyrolactone!” to give rac-
azidohomoalanine in reasonable quantities.'”> Whilst only
the L-enantiomer was incorporated into the proteins of in-
terest, the effect of the D-enantiomer on cell growth and
protein production was not reported, but could potentially
be detrimental.
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We proposed that the three homologous L-azidoamino
acids 1, 2 and 3 could be prepared starting from inexpen-
sive, commercially available, protected amino acids em-
ploying a common synthetic scheme that avoids handling
highly dangerous or toxic compounds such as diaz-
omethane, or the use of the unstable triflic azide.

Initially, we developed the synthetic route shown in
Scheme 1 for the synthesis of L-Aha (2) as this has been
shown to be by far the most translationally active me-
thionine surrogate** and, consequently, the azidoamino
acid most widely employed. Starting from N-Boc- and O-
benzyl-protected L-aspartic acid 4, the y-carboxylic acid
was reduced directly via the mixed anhydride formed with
isobutyl chloroformate.'® This step was carried out on a
multigram scale to give 5 reproducibly in quantitative
yield and further purification was not required. The result-
ing alcohol 5 was then subjected to a standard mesylation
reaction using mesylchloride and triethylamine to give
mesylate 6."° The mesylate function was then displaced
with an azide group by treatment with sodium azide in
DMF at slightly elevated temperature to give protected
azide 7 in an excellent yield of 92%.%° An initial attempt
to deprotect the amino acid in two subsequent steps using
an acid-mediated deprotection of the Boc group followed
by a basic cleavage of the benzyl ester did result in the free
amino acid, however, due to the additional purification
step, the overall yield was reduced.
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o 6 equiv NaBH,4
THF-MeOH (1:2)
-10°C—r.t.,05h
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Scheme 1 Synthesis of L-azidohomoalanine (L-Aha, 2)

We therefore applied a global deprotection strategy em-
ploying boron tribromide?! that afforded 2 in quantitative
yield after crystallisation; an overall yield of 86% from
4.22 The purity of the material obtained was ~98% (the
major by-product resulting from a displacement of the
azide group with a bromide), which could be enhanced to
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>99% by either recrystallisation from ethanol/water or
ion-exchange chromatography.’

After establishing a viable route for L-Aha (2), we then
turned our attention to the synthesis of the homologues 1
and 3 as single enantiomers. Applying the same strategy
starting from either N-Boc- and O-benzyl-protected L-
serine 9 or protected L-glutamic acid 8, which are both
low cost, commercially available compounds, the expect-
ed products 1 and 3 could be obtained in high overall
yields of 68% (over three steps) and 62% (over four
steps), respectively (Scheme 2).
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Scheme 2 Synthesis of L-azidoalanine (1) and L-azidonorvaline (3)

It is noteworthy that, after reduction of the protected
glutamic acid 8, purification of the alcohol 10 by column
chromatography was necessary, presumably to remove
traces of boron-based compounds and any aldehyde
present. If the alcohol is subjected to the mesylation reac-
tion without prior purification, the yield of the mesylation
reaction decreases from 81% to 42%.

In conclusion, a facile and robust synthesis of the three ho-
mologous azidoamino acids: L-azidoalanine (1), L-azido-
homoalanine (2) and L-azidonorvaline (3), from
inexpensive, commercially available starting materials
has been developed. The synthetic route is high-yielding,
applicable to all three compounds and could also be ap-
plied to the synthesis of L-azidonorleucine without modi-
fication. This route does not require highly hazardous or
unstable reagents and so could be performed on multi-
gram scales when large quantities of azidoamino acid
bearing protein were required for further selective modifi-
cation. The introduction of L-Aha (2) into proteins also al-
lows mild fragmentation of peptides and proteins at
specific positions.
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To a solution of alcohol 5 (269 mg, 0.87 mmol, 1.0 equiv)
in CH,Cl, (5 mL) at 0 °C, was added Et;N (288 pL,

2.09 mmol, 2.4 equiv) followed by dropwise addition of
methylsulfonyl chloride (81 pL, 1.04 mmol, 1.2 equiv). The
ice-bath was removed and the solution was stirred at r.t. for
15 min. Sat. NaHCO; (5 mL) was added and the layers were
separated. The organic layer was washed with brine (2 X

5 mL) and the combined aqueous layer was back-extracted
with CH,Cl, (2 x 10 mL). The combined organic layer was
dried over MgSO,, the solids filtered off and the solvent
removed in vacuo. The crude product was purified by
column chromatography (silica; PE-EtOAc, 7:3) to give a
colourless solid (312 mg, 0.81 mmol, 93%); mp 61-63 C
(CHCLy); [a]p*® -37.1 (¢ 0.11, CHCL,); IR: 3009, 1711, 1500,
1364, 1175 cm™'; "H NMR (400 MHz, CDCl,): & = 1.39 (s,
9 H, Bu), 2.08 (m, 1 H, Hp,), 2.29 (m, 1 H, Hy,), 2.92 (s,

3 H, SO,CH;), 4.24 (m, 2 H, H,), 4.43 (m, 1 H, H,), 5.15 (s,
2 H, CH,Ph), 5.26 (bd, J = 7.0 Hz, 1 H, NH), 7.33 (m, 5 H,
Ar); ®C NMR (100 MHz, CDCl): § = 28.2 [C(CH,),], 31.8
(Cp), 37.1 (SO,CHy), 50.4 (C,), 65.8 (C,), 67.5 (CH,Ph),
80.3 [C(CHs);], 128.4, 128.5, 128.7, 135.0 (Ar), 155.3 (-
BuOCONHR), 177.5 (CO,Bn); MS (ESI+): m/z [M + NaJ*
calcd for C;;H,sNNaO,S: 410.1244; found: 410.1225.

To a solution of mesylate 6 (222 mg, 0.56 mmol, 1.0 equiv)
in anhydrous DMF (2 mL), was added NaN; (54 mg,

0.84 mmol, 1.5 equiv) in one portion. The suspension was
stirred at 40 °C for 4 h, then the solvent was removed in
vacuo and the crude product was purified by column
chromatography (silica; PE-EtOAc, 4:1). The azide 7 was
obtained as a colourless oil (171 mg, 0.51 mmol, 92%);
[a]p®® +2.8 (¢ 0.71, CHCLy); IR: 3434, 2981, 2104, 1712,
1499, 1160 cm™; 'TH NMR (400 MHz, CDCl,): § = 1.41 (s,
9 H, Bu), 1.89 (m, 1 H, Hg,), 2.08 (m, 1 H, Hy,), 3.34 (t, J =
6.7Hz,2 H,H,),4.41 (m, 1 H,H,),5.13(d,/=12.3Hz, 1 H,
CH,Ph), 5.18 (d, /= 12.3 Hz, 1 H, CH,Ph), 5.19 (brs, 1 H,
NH), 7.34 (m, 5 H, Ar); *C NMR (100 MHz, CDCl,): § =
28.2 [C(CH,);], 31.7 (Cp), 47.6 (C)), 51.5 (C,), 67.3
(CH,Ph), 80.2 [C(CHy3)s], 128.3, 128.5, 128.6, 135.1 (Ar),
155.2 (tBuOCONHR), 171.8 (CO,Bn); MS (ESI+): m/z [M
+ Na]* caled for C,H,,N,NaO,: 357.1533; found: 357.1522.
Felix, A. M. J. Org. Chem. 1974, 39, 1427.

To a solution of protected amino acid 7 (33 mg, 0.1 mmol,
1 equiv) dissolved in anhydrous CH,Cl, (2.5 mL) at =10 °C
under an N, atmosphere, boron tribromide solution (1 M in
CH,Cl,, 0.5 mL, 0.5 mmol, 5 equiv) was added dropwise
over 5 min. The resulting solution was stirred for 1 h at
—10 °C and for 2 h at r.t. The reaction was quenched by
careful addition of H,O (2.5 mL), and then the layers were
separated. The organic phase was washed with H,O (3 x

5 mL) and the combined aqueous layer was evaporated to
dryness. The crude product was re-dissolved in a minimum
amount of ethanol and the pure product 2 was obtained by
precipitation at 4 °C as a colourless crystalline solid (14 mg,
0.1 mmol, quantitative yield).
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