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ABSTRACT: The first approaches to the 10′-anthronyl-2-
anthraquinone skeleton have been devised, allowing two
syntheses of the marine natural product albopunctatone. Both
routes involve regioselective addition of a nucleophilic masked
anthraquinone to a protected chrysazin derivative; the best
affords albopunctatone in five steps and 35% overall yield.
Albopunctatone exhibits potent inhibitory activity against
Plasmodium falciparum and negligible toxicity to a range of
other microbial pathogens and mammalian cells.

A lbopunctatone (1, Figure 1) is an anthronyl-
anthraquinone (AAQ) isolated, in 2012 by Carroll’s

group, from the Great Barrier Reef ascidian Didemnum
albopunctatum.1 It is the first, and currently the only, C2−
C10′ linked2 AAQ to be isolated from a marine source; the 14
other reported natural products sharing this scaffold come
from plants,3−10 many of which are used in traditional
medicine.4,6,7,11,12 Indeed, the first described AAQ 2 (Figure
1) is a constituent of Aloe maculata (previously called Aloe
saponaria), which is used in Southern Africa for the treatment
of various ailments. In 2005, AAQ natural products were
shown to inhibit the growth of Plasmodium falciparum,12 and
since this first report, several congeners have been found to
display antimalarial activity.9,10 Notable among these are the
chrysophanol dimer 2 and chryslandicin (3), which exhibit
potent activity against the chloroquine-resistant Dd2 strain of

P. falciparum, with IC50 values of 0.4 μM and 0.2 μM,
respectively,13 while being relatively nontoxic to mammalian
host cells. Albopunctatone (1) was reported to have
comparatively moderate antimalarial activity (Dd2 IC50 5.3
μM; chloroquine-sensitive 3D7 IC50 4.4 μM), but a selective
mode of action given a lack of activity against a range of
normal and cancerous human cell lines, and the protist parasite
Trypanosoma brucei brucei at concentrations up to 40 μM.1

The AAQs are dimers or heterodimers of 1,8-dihydroxyan-
thraquinones. Albopunctatone (1) is the only example with a
symmetrical monomeric unit, chrysazin (4, Scheme 1), and

thus the only achiral AAQ. All chiral AAQs but one have been
reported to have optical activity, and the configuration of the
10′ stereocenter has been determined in some cases,8,9

suggesting that biosynthetic construction of the C2−C10′
bond is enzyme-catalyzed. Given that the AAQ scaffold (Figure
1, highlighted blue) had not been synthesized before, we
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Figure 1. Structure of antimalarial AAQ natural products
albopunctatone (1), chrysophanol dimer 2, and chryslandicin (3).
Compounds 2 and 3 have optical activity, but the absolute
configuration is unknown.3,4

Scheme 1. Potential Nucleophilic Synthon, and Starting
Materials, for the Synthesis of Albopunctatone
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pursued the synthesis of albopunctatone as an entry point into
this interesting class of antimalarials.
Our synthetic strategy mimics the likely biosynthesis of

albopunctatone (1): dimerization of chrysazin (4) (Scheme 1).
We envisaged regioselective addition of a nucleophilic 1,8-
dihydroxyanthraquinone synthon equivalent to 6, to a suitably
protected chrysazin derivative. Initially it was proposed that the
required nucleophile may be generated by lithium−iodine
exchange of 5 (Scheme 1), which is easily prepared based upon
previous experience.14 However, the poor step economy in the
synthesis of 5 led us to consider alternatives.
A nucleophilic anthraquinone synthon, generated by ortho-

lithiation of 1,5-bis(methoxymethoxy)anthracene, was used by
the Tius group in their synthesis of the C-glycosylanthra-
quinone antibiotic vineomycinone B2 methyl ester.15 Similar
results were obtained with 1,8-bis(methoxymethoxy)-
anthracene (9). This approach was appealing, as the two-
step preparation of anthracene 9 from chrysazin (4) would also
provide the necessary electrophilic partner 7 (Scheme 2).

The di-MOM acetal of chrysazin (7) was therefore prepared
from chrysazin (4)15 and reduced to anthracene 9 with zinc
dust in refluxing aqueous hydroxide.16 Directed ortho-lithiation
of 9 under the reported conditions15 gave good conversion to
the lithioanthracene 10, though D2O-quenching experiments
showed that the conversion could be improved slightly by
simply halving the reaction time to 1 h (see Table S2).
Subsequent addition of 10 to the anthraquinone 7 at 0 °C
unexpectedly produced the two regioisomeric carbinols 11 and
12 in approximately equal amounts, despite the steric
hindrance at C9. The regioselectivity was not improved at
−78 °C (see Table S3). Yang and co-workers reported similar
reactivity of a 1,8-dimethoxyanthraquinone with benzyl-
magnesium bromide as an obstacle during their total synthesis
of clostrubin.17 In the case of anthraquinone 7, we suspect that

the steric bulk of the MOM groups is countered by their ability
to direct addition of lithioanthracene 10 to C9. This issue was
addressed by the use of the noncoordinating tert-butyldime-
thylsilyl (TBDMS) protecting group in 8.18 Treatment of 8
with anthryllithium 10 afforded only one regioisomer, adduct
13. The silyl ethers of 13 were unstable during workup and
purification and, hence, were deliberately hydrolyzed,19

delivering anthronylanthracene 14 in good yield.
Having constructed the carbon skeleton of albopunctatone

(1), all that remained was to oxidize the anthracene moiety of
14, restoring the anthraquinone 9,10-carbonyl groups. A
similar oxidation was achieved by Tius and co-workers15

with bispyridine silver permanganate (BPSP),20,21 which has
since been employed successfully to oxidize a variety of
anthracenes to 9,10-anthraquinones.22−24 It is implied in the
literature that these oxidations are best conducted under
anhydrous conditions; however, after taking care to ensure the
oxidant, solvent, and silica gel were water-free, attempts to
oxidize 14 only returned starting material.
Consequently, some alternative oxidants were trialled, with

varied results. Periodate with catalytic permanganate25 also
failed to oxidize anthracene 14. Chromic acid26,27 proved too
acidic, cleaving the methoxymethyl acetals and oxidizing the
resulting phenolic moieties to give the 1,4,5,8-anthracenete-
trone 15 (Scheme 3). Pyridinium chlorochromate over sodium

acetate28,29 left one MOM group intact, oxidizing only the
internal ring to afford the 1,4-anthraquinone 16. The low
yields of these oxidation products 15 and 16 can, in part, be
accounted for by the formation of significant quantities of the
side product chrysazin (4).
Following these failures, BPSP was revisited as an oxidant,

with further experiments on the tetra-MOM derivative 11
suggesting that the oxidation requires trace water. Using
unactivated silica gel, and otherwise the same conditions as in
previous unsuccessful experiments, the anthracene 11 was
oxidized to hydroxyanthrone 17 with the desired anthronyl-
anthraquinone a minor product (see p S17 in the Supporting

Scheme 2. Construction of the Albopunctatone Carbon
Skeleton from Anthryllithium 10

Scheme 3. Oxidation of Anthrylanthrones
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Information). When the di-MOM derivative 14 was subjected
to these slightly modified conditions, the oxidation similarly
stalled at the hydroxyanthrone 18. We were discouraged from
attempting to force the oxidation to completion by the
observation that increasing amounts of the side-product
chrysazin (4) were again formed as the reaction progressed.
Instead, any remaining BPSP was filtered off, and crude

hydroxyanthrone 18 was treated with base to facilitate aerial
oxidation to the anthraquinone.30,31 In situ treatment with
excess acid cleaved the MOM acetals and furnished
albopunctatone (1) in 19% yield across the six synthetic
steps from chrysazin (4) (Schemes 2 and 3).
The obstacles encountered in what was anticipated to be a

routine oxidation of anthracene 14 encouraged a modified
approach to 1 based around dimethoxyanthracene 19,
prepared via reductive methylation of anthraquinone 7
(Scheme 4). Directed ortho-metalation of 19 would provide
a nucleophilic anthraquinone synthon amenable to subsequent
oxidation to an anthraquinone; however, 9,10-dimethoxyan-
thracenes are susceptible to nucleophilic attack across their
central ring,32−34 making them incompatible with the standard
organolithium bases (n-, sec-, and t-BuLi). Non-nucleophilic
bases were therefore employed in initial attempts to metalate
dimethoxyanthracene 19, though neither lithium diisopropy-
lamide nor lithium tetramethylpiperidide proved effective (see
Table S4).
Matsumoto and co-workers avoided nucleophilic attack

through use of the Lochmann−Schlosser superbase (1:1
mixture of n-BuLi and t-BuOK), which smoothly metallates
dimethoxyanthracenes without competing C9/C10 addi-
tion.33,34 Previous metalations of dimethoxyanthracenes
generally used two equivalents of the Lochmann−Schlosser
base.33,34 The excess n-BuLi was expected to react com-
petitively with electrophile 8, hence, the metalation of
dimethoxyanthracene 19 was attempted with a smaller excess
of 1.2 equiv of n-BuLi−t-BuOK. In these experiments D2O
quenching indicated incomplete or very sluggish metalation,
with 55% deuterium incorporation being the best result (see
Table S4). Increasing the ratio of t-BuOK to n-BuLi increases
the reactivity of the superbase in some deprotonations,35 but in
this case a 1:3 ratio of n-BuLi to t-BuOK completely
suppressed metalation of 19. Relenting, two equivalents of n-

BuLi−t-BuOK were used to cleanly generate the metal-
loanthracene 20. Treatment of 20 with the anthraquinone 8
afforded the adduct 21 in moderate yield. As predicted, side
products resulting from the use of excess n-BuLi were
observed. Isolation of the anthronylanthracene 21 proved
difficult, so freshly prepared crude 21 was directly subjected to
oxidative demethylation. The acidic conditions for the
oxidation also effected global deprotection, simplifying the
crude to essentially a mixture of chrysazin (4) and
albopunctatone (1), from which 1 was easily isolated. This
second route improved significantly on the original approach
(Schemes 2 and 3), and afforded 1 in five synthetic steps and
35% overall yield from chrysazin (4).
The 1H and 13C NMR data for synthetic albopunctatone are

in full agreement with those reported for the natural product,1

and confirmed by a single crystal X-ray structure (Figure 2).

With ample quantities on hand, the biological activity of
albopunctatone was assessed against a small panel of microbial
pathogens, specifically, Mycobacterium tuberculosis, Leishmania
donovani, Trypanosoma cruzi, and T. brucei. brucei. No
significant activity was observed against any of the microbes,
nor the mammalian host cells (THP-1 for L. donovani, 3T3
cells for T. cruzi), or a control mammalian cell line (HEK-293).
However, synthetic albopunctatone was found to have similar

Scheme 4. A Second, More Efficient Route to Albopunctatone (1)

Figure 2. Representation36 of the crystal structure of albopunctatone
(1). Ellipsoids are shown at 50% probability amplitudes with
hydrogen atoms assigned arbitrary radii. A disordered EtOAc
molecule was omitted for clarity. CCDC Number 1918756.
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potency against P. falciparum 3D7 strain asexual parasite (IC50
= 1.24 ± 0.19 μM, Figure S1) to that previously reported for
the ascidian-derived material.1

Given the common ancestry of plants and Plasmodium
species,37 and the demonstrated herbicidal activity of some
antimalarials,38 the effect of albopunctatone on Arabidopsis
thaliana was also assessed; however, no herbicidal activity was
observed up to 100 μM (Figure S2). This result could reflect a
biological target only expressed in the parasite, and thus likely
outside the apicoplast, or simply poor uptake in the plant.
Thus, the intriguing biological target of albopunctatone
remains unknown. Given the potent and highly selective
antimalarial activity of the AAQs, further studies to elucidate
this target are warranted. The syntheses presented herein
provide the means to obtain the necessary materials to
interrogate the mode of action of the AAQs.
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