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Als~aft. The regioselective halogenatmn of pyrldmium-N-(2’-pyridyljaminide 1 with N-chloro, 

bromo or iodosuccinimtde under mild conditions IS described. The method, combined with a 

reductmn of the N-N bond, allows an easy preparation of 5-h& and 3,5-dihalo-Z-aminopyridines 4 

It is a well-known axiom in heterocyclic chemistry that electrophilic substitution of rc-deficient 

azines and diazines occurs with great difficulty, if at all. However, N-oxides’ or other systems with 

electron-donating substituents,’ such as ammo groups, can easily be involved in electrophilic processes i.e. 

the halogenation. On the other side, halo-2aminopyridines are intermediates of interest in the synthesis of 

relevant biologically active molecules,’ being the direct halogenation of the corresponding 2aminopyridine 

the more common method of preparation. Different halogenation systems have been employed, but in most 

cases the use of the aggressive molecular halogen is required.4 More recently, new halogenation reagents 

such as tetrabutylammonium tribromide (TBABr,) have been developed, allowing the formation of S- 

bromo-2aminopyridine in high yield.’ N-Halosuccinimides, (NXS) have also been used as one of the 

mildest sources of X’, being a safe alternative to the use of molecular halogen. They have been currently 

applied in the synthesis of haloarene@, but little attention has been paid to their use in azine ring 
halogenations.’ 

Pyridinium N-(2’-pyridyl)aminide (I) is an interesting example of a stable heterocyclic betaine, in 

which there is a x-deficient pyridinium fragment linked to a n-excessive 2-iminopyridine moiety. The 

negative charge on the exocyclic nitrogen facilitates the reaction of the pyridme nucleus towards 
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Scheme 1 NXS: N-Xsuccinimide: NYS: N-Ysuccinimide. 
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electrophiles. In a recent paper,’ we had described the easy preparation of the betaine 1 from 2,4- 

dinitrophenyl pyridinium halide and 2-pyridylhydrazine, together with some of the reactions with halogens, 

but in most cases the formation of mixtures of 5’- and 3’,5’-disubstituted derivatives was not successfully 

controlled. 

In this communication we report the use of different NXS in the preparation of haloaminides 2 and 

3 (Scheme I), which were easily reduced to obtain the 2-aminopyridines 4. 

As indicated in Scheme 2, three methods were used to prepare the haloderivatives 2 and 3. The 5’- 

haloaminides 2a-c were satisfactorily obtained by reaction, at low temperature (-2O”c, with X = Cl, Br and 

20°C with X = I), of equimolar amounts of 1 and the corresponding N-halosuccinimide (NXS, X = Cl, Br 

or I) (Method A). Traces of dihalo derivatives were detected in some reaction mixtures (X = Cl, 5%, Br, 

1.5%, I, 0%). The haloderivatives 2 were halogenated again by treatment with an alternative NYS, at room 

temperature, and the dihaloaminides 3 were obtained (Method B). When the process was carried out at 

room temperature, using a two molar excess of NXS, the 3’,5’-dihaloaminides 3 (X = Y) were obtained 

in one step (Method C). Fluorination was tried with N-fluoro-N-methyl-p-toluenesulphonamide without 

success. 

1 2 3 

\ 2 NXS (X=Y) f 

Method C 

Scheme 2. Halogenation methods. 

The use of Method B in the preparation of 3, was not always straightforward, producing the 

expected compounds in the preparation of 3a, b, c (X = Y = Cl, Br, I), 3d (X = Cl; Y = Br) and 3e (X= 

Cl Y = I), but when the method was tested to halogenate the iododerivative 2c, ipso substitution was 

X 
3e Cl 
3g Br 

X- 
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Scheme 3. Ipso substitution on 2c 

X 
3a Cl 
3b Br 

observed, the dihaloderivatives 3a and b being isolated in 50% yield. Although a free-radical substitution 
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cannot be discarded, the simplest explanation seems to be the process going through an electrophilic ipso 

substitution’ (Scheme 3), facilitated both by the electron donating character of the aminide nitrogen and by 

the good electrofugal ability of the iodo substituent. 

In a preceding communication,8a we described the N-N bond fission using Zn /acetic acid (Method 

2-3 

Scheme 4. Reduction of aminides 2, 3. 

Table 1. Compounds 2, 3 and 4 obtained. 

Comp. PRXUNX Reagent= Method X Y Yield 

(Lit. Yield) 

2a 1 NCS A 

2b 1 NBS A 

2c 1 NIS A 

3a 2a NCS B 

3a 1 NCS C 

3a 2c NCS B 

3b 2b NBS B 

3b 1 NBS C 

3b 2c NBS B 

3c 2c NIS B 

3c 1 NIS C 

3d 2a NBS B 

3e 2a NIS Be 

3f 2b NCS B 

4a 2a Zn/H+ D 

4b 3a ztllH+ D 

4c 3b Zn/H+ D 

4c 2b TEAF, WC E 

4d 3b TEAF, PtlC E 

4e 2c TEAF, PtK E 

4e 3c TEAF, Pt/C E 

41 3d TEAF, PK E 

4g 3, TEAF, PtfC E 

4b 3f TEAF, Pt/C E 

Cl 

Br 

I 

Cl 

Cl 

Cl 

Br 

Br 

Br 

I 

I 

Cl 

Cl 

Br 

Cl 

Cl 

Br 

Br 

Br 

I 

I 

Cl 

Cl 

BI 

H 78 

H 71(14)b 

H 90(61)b 

Cl 80 

Cl 55c 

Cl 5sd 

Br 85b 

Br 73(7$ 

Br 50b.d 

I 64b 

I 61(70)b 

Br 96 

I 50 

Cl 53 

H 79’ 

Cl 88f 

H 79 

H 63g 

Br 72h 

H 81’ 

H 71’ 

Br 86i 

H 87f 

Cl 7sk 

a NCS = N-Chlorosuccinimide, NBS = N-Bromosuccinimide, NIS = N-Iodosuccinimide, TEAF = Triethylammonium formate. 

b Described in reference 8b, by halogenation with 1 mole of the corresponding halogen.c The product was obtained as 

hydrochloride.d Ipso substitution.e The method was performed at reflux temperature, for 3 hoursf Described in ref. 1 I? 

Described in ref. 12. h Described in ref. 13. ’ Described in ref. 14.1 Described in ref. 15. k Described in ref. 16. 
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D), as a way to produce the substituted 2aminopyridines 4 from the corresponding aminides. In that 

way,the 5’-chloro and 3’,5’-dichloro-2aminopyridines 4a and 4b were satisfactorily obtained. However, 

when the method was applied to bromo or iodo derivatives, extensive dehalogenation was observed, being 

regioselective in the case of the aminide 3b, where the bromo in the 3-position was selectively cleaved. As 

an alternative, reduction using formic acid/triethylamine, in the presence of platinum on carbon, has been 

described” as a chemoselective method for nitrogen functionalities without alteration of C-Hal bonds. The 

use of the method with aminides 2 and 3 (Method E) produced the expected halo-2-aminopyridines, except 

for iodo derivatives, in which the 3-I was easily cleaved. When the method was applied to compounds 3b 

and 3d, control of temperature -which should not be higher than 9O”C- proved to be essential to prevent 

cleavage of the 3-Br group in the final product. All results obtained are summarized in Table 1. 

In conclusion, the pyridinium-N-(2’-pyridyl)aminide 1 can be regioselectively halogenated with N- 

chloro, bromo or iodosuccinimide under mild conditions. The method, combined with a reduction of the 

N-N bond, allows an easy preparation of ?&halo and 3,5-dihalo-2-aminopyridines 4. The methodology is 

being extended to the preparation of different 2-aminoazine derivatives. 

EXPERIMENTAL 

Melting points were determined on a Btichi SMP-20 apparatus and are uncorrected. IR spectra 

(KBr) were recorded using a Perkin Elmer 700 spectrophotometer. ‘H NMR spectra were obtained on a 

Varian Unity (300 MHz) spectrometer. Chemical shifts are expressed in parts per million downfield from 

tetramethylsilane. Elemental analyses were carried out on a Heraeus Rapid CHN analyzer and are within 

0.4% of the theoretical values for all new compounds described. 

Halogenation of pyridinium aminides. Method A: To a solution of Pyridinium N-(2’-pyridyl)aminide (1) 

(1 mmol) in dichloromethane (5 mL) stirred at -20°C a solution of the corresponding NXS (1 mmol) in 

the same solvent (10 mL) was added dropwise. After 1 hour of stirring, the solvent was evaporated and 

the residue was purified by column chromatography on silica gel with ethanol as eluent. The solid was 

recrystallized from the suitable solvent. 

Method B: Similar to procedure A, except starting with the corresponding 5’-Haloaminides 2a-c. The 

addition of the NYS solution was performed at room temperature (25°C) and stirring was kept for 24 

hours, except for Y = I, which needed 72 hours. 

Method C: As described for procedure A, but a two molar excess of NXS was used. The addition of the 

NXS was performed at room temperature (25°C) and stirring was kept for 24 hours, except for Y = I 

which needed 72 hours. 

Reduction of pytidinium aminides. Method D. A solution of the corresponding haloaminides 

hydrobromides (1 mmol) in glacial acetic acid (15 mL) and Zinc dust (10 mmol) was stirred at room 

temperature for 5 hours. When almost all the Zn had disappeared, another portion of Zn (10 mmol) was 

added and the mixture was kept on stirring for 24 hours more. The resulting suspension was passed 

through a celite column, and eluted with acetic acid (2 x 2 mL). The eluate was evaporated in vacua and 

the product was crystallized and identified. 

Method E. Platinum on activated carbon (5%, 0.075 mg) was suspended into a solution of the 

corresponding aminide (0.31 mmol) in acetonitrile (3 mL) and cooled in an ice bath. Formic acid (98%, 

0.5 mL) in acetonitrile (1.5 mL) was added, and then triethylamine (4.5 mL) in the same solvent (3 mL) 

was dropwise added. The reaction mixture was refluxed for 3-4 hours, and when cool, it was filtered. With 
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3b and 3d, the temperature had to be maintained below 90°C. The filtrate was evaporated and the residue 

dissolved in water, made basic with sodium carbonate and extracted with ethyl acetate (3 x 15 mL). The 

combined organic phases were dried over MgSO,, filtered and evaporated to dryness. The residue was 

purified by column chromatography on silica gel (EtOAclhexane 8:2). The corresponding 2-aminopyridine 

was purified and identified. 

2a Mp 130-131” (red prisms, acetone). ‘H NMR: 8.90 (d, 2H, J = 5.8 Hz, H2 and H6); 7.79 (t, lH, J =7.6 

Hz, H4); 7.67 (t. 2H, J = 7.3, H3 and HS); 7.62 (d, lH, J = 2.7 Hz, H6’); 7.24 (dd, lH, J = 9.1 and 2.8 

Hz, H4’); 6.33 (d, lH, J = 9.1 Hz, H3’). Anal calcd for C,&I,ClN,: C, 58.52; H, 3.93; N, 20.49; Cl, 

17.05. Found: C, 58.32; H, 3.99; N, 20.60; Cl, 17.21. 

3a Mp 150-152” (orange plates, acetone/ethanol)‘H NMR: 8.73 (dd, 2H, J = 6.8 and 1.3 Hz, H2 and H6); 

8.04 (t, lH, J =7.6 Hz, H4); 7.81 (t, 2H, J = 6.8, H3 and H5); 7.53 (d, lH, J = 2.3 Hz, H6’); 7.50 (d, IH, 

J = 2.3 Hz, H4’). Anal calcd for C,&CI,N,: C, 50.21; H, 2.95; N, 17.58; Cl, 29.26. Found: C, 50.35; 

H, 3.09; N, 17.59; Cl, 29.46. 

3d Mp 150-154” (yellow plates, dichloromethaneldiethyl ether). ‘H NMR: 8.70 (d, 2H, J = 7.0 Hz, H2 and 

H6); 8.01 (at, lH, J =7.7 Hz, H4); 7.78 (at, 2H, J = 7.7 Hz, H3 and H5); 7.59 (d, lH, J = 2.2 Hz, H6’); 

7.54 (d, lH, J = 2.2 Hz, H4’). Anal calcd for Cl,,H-,ClBrN3: C, 42.41; H, 2.49; Br, 27.80; Cl, 12.36; N, 

14.85. Found C, 42.29; H, 2.30; Br, 27.65; Cl, 12.50; N, 14.53. 

3e Mp 140-142” (yellow plates, acetone). ‘H NMR: 8.77 (d, 2H, J = 7.1 Hz, H2 and H6); 8.11 (t, lH, J 

=7.3 Hz, H4); 7.90 (t, 2H, J = 7.5 Hz, H3 and H5); 7.48 (d, lH, J = 2.3 Hz, H6’); 7.33 (d, lH, J = 2.3 

Hz, H4’). Anal calcd for C,,H,ClIN,: C, 36.26: H, 2.13; Cl, 10.57; I, 38.35; N, 12.69. Found C, 336.50; 

H, 2.32; Cl, 10.50; I, 38.13; N, 14.43. 

3f Mp 156-159” (yellow plates, dichloromethane/diethyl ether). ‘H NMR: 8.73-8.68 (m, 2H, H2 and H6); 

8.02 (t. IH, J =7.3 Hz, H4); 7.79 (t, 2H, J = 7.3 Hz, H3 and H5); 7.56 (d, lH, J = 2.2 Hz, H6’); 7.53 (d, 

IH, J = 2.2 Hz, H4’). Anal calcd for CloH7ClBrN3: C, 42.41; H, 2.49; Br, 27.80; Cl, 12.36; N, 14.85. 

Found C, 42.58; H, 2.40; Br, 27.68; Cl, 12.48; N, 14.97. 
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