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Summary of main observation and conclusion  We herein uncovered an electrochemical C-H halogenation protocol that synergistically combines anodic 
oxidation and cathodic reduction for C-X bond formation. The reaction was demonstrated under exogenous-oxidant-free conditions. Moreover, this is the 
first example of activating CBr4, CHBr3, and CCl3Br under electrochemical conditions. 

Background and Originality Content 

Electrochemical synthesis is a cost-effective, scalable and 
environmentally friendly method for C-H functionalization with 
the prospect of avoiding the use of stoichiometric oxidants or 
reductants.[1] In the past few years, extensive efforts have been 
made and great achievements have been accomplished.[2] In most 
cases, however, only one of the two electrochemical half-reaction 
leads to the product of interest, the chemistry that occurs at the 
counter electrode does not generate the target products. For 
example, the electrochemical anodic oxidation drived C-H 
functionalization, in which only anodic reaction yields expected 
products. Undoubtedly, synergy of anodic oxidation and cathodic 
reduction leads to C-H functionalization is a more ideal strategy. 
However, up to now, the strategic use of this concept in organic 
reaction design and discovery remains very rare and great 
challenge.[3] 

Organic halides, either aryl or alkyl halides are significant 
motifs frequently found in many biologically active compounds,[4] 

and serve as versatile building blocks for constructing various 
complex molecules.[5] Despite of remarkable progress in the field 
of synthesizing organic halides,[6] the reported methods 
frequently require stoichiometric oxidants/additives, metal 
catalysts, leaving groups/directing group, and/or toxic 
halogenating reagents (Scheme 1, top). 

Scheme 1  Methods for C-H halogenation 

Carbon tetrabromide is a readily available commercial reagent 
and has been widely used for organic synthesis.[7,8] Previous 

studies have revealed that carbon tetrabromide could take one 
electron from the electron donors and is reduced to bromine ion 
and tribromomethyl radical.[9] We recognized that above 
reductive transformation might also be achieved under the 
electrochemical conditions. Inspired by this idea and the fact that 
synergy of anodic oxidation and cathodic reduction forms the 
useful products is a more ideal strategy for C-H functionalization, 
we herein uncovered an electrochemical C-H halogenation 
protocol that tactfully makes anodic oxidation and cathodic 
reduction synergy for C-X bond formation (Scheme 1, bottom). It 
is worth noting that this is the first example of activating CBr4, 
CHBr3, and CCl3Br under electrochemical conditions. Moreover, 
this reaction features broad substrate scope and can be easily 
scaled-up. 

Table 1  Effect of reaction parametersa 

a Reaction conditions: carbon rod anode, nickel plate cathode, constant 

current = 12 mA, 1a (0.5 mmol), CBr4 (0.5 mmol), nBu4NBF4 (0.1 mmol), 

MeCN (10 mL), MeOH (1 mL), 75 oC, N2, 2.5 h, isolated yields, SS = stainless 

steel plate. 
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Results and Discussion 

Our initial studies of the electrochemical C-H halogenation 
focused on the bromination of 2-phenylimidazo[1,2-a]pyridine (1a) 
(Table 1). We were motivated to use this substrate because 
imidazopyridines represent one of the most prevalent structural 
units in many biologically active molecules, and the resultant 
products can be subsequently transformed into the other 
biologically active molecules. Gratifyingly, when CH3CN and MeOH 
were employed as the co-solvent, the desired C-H bromination 
product 2a was produced in 93% yield under a 12 mA constant 
current in an undivided cell (Table 1, entry 1). Both replacing the 
nickel plate cathode with stainless steel plate or platinum plate 
and replacing the carbon rod anode with platinum plate led to 
slightly decreased reaction yields (Table 1, entries 2-4). Either 
decreasing the operating current to 6 mA or increasing the 
operating current to 18 mA also led to slightly decreased reaction 
yields (Table 1, entries 5-6). Latter, different electrolytes were 
investigated. However, all had slightly lower effectiveness than 
nBu4NBF4 (Table 1, entries 7-8). Next, some solvents were explored. 
Either using MeCN as the sole solvent or using CH3CN and H2O as 
the co-solvent showed similar reactivity with CH3CN and MeOH 
(Table 1, entries 9-12). Control experiment confirmed that the 
reaction does not proceed without electric current (Table 1, entry 
13). Notably, the bromination of 2-phenylimidazo[1,2-a]pyridine 
(1a) could be easily conducted on a 10 mmol scale to afford 2a in 
81% yield (Table 1, entry 14, See ESI for details). 

Table 2  Electrochemical C-H bromination of heteroarene/arenes a 

 

a Reaction conditions: carbon rod anode, nickel plate cathode, constant 

current = 12 mA, 1 (0.5 mmol), CBr4 (0.5 mmol), nBu4NBF4 (0.1 mmol), 

MeCN (10 mL), MeOH (1 mL), 75 oC, N2, 2.5 h, isolated yields. 

With the optimized conditions in hand, the substrate scope of 
the electrochemical C-H bromination was investigated by using 
various heteroarene/arenes (Table 2). Gratefully, our method was 
successfully amenable to a wide range of imidazo[1,2-a]pyridines. 
Imidazo[1,2-a]pyridines with either aryl or alkyl groups at the C-2 
position were tolerated under the standard conditions, delivering 
the corresponding C-H bromination products in high to excellent 
yields (Table 2, 2a-2m). Imidazo[1,2-a]pyridines bearing 

substituents such as methyl, fluorine, or trifluoromethyl groups at 
different positions of the pyridine ring also furnished the C-H 
bromination products in high yields (Table 2, 2n-2q). Notably, the 
current electrochemical C-H bromination system was also 
compatible with other electron-rich heteroarene/arenes, such as 
1,3,5-trimethoxybenzene, benzothiophene, and 2-aminopyridine 
(Table 2, 2r-2t). 

Table 3  Electrochemical C-H bromination of α-carbonyl compoundsa 

 
a Reaction conditions: carbon rod anode, nickel plate cathode, constant 

current = 12 mA, 3 (0.5 mmol), CBr4 (0.5 mmol), nBu4NBF4 (0.1 mmol), 

MeCN (10 mL), MeOH (1 mL), 75 oC, N2, 2.5 h, isolated yields. 

Significantly, the scope of the electrochemical C-H 
bromination could be extended to α-carbonyl compounds (Table 
3). It was observed that the desired C-H bromination products 
were obtained in 82-86% yields when ethyl benzoylacetate 
derivatives were used (Table 3, 4a-4c). Notably, besides ethyl 
benzoylacetates, acetophenone derivatives were also suitable 
substrates in this electrochemical C-H bromination. For example, 
when the reaction was performed with 4-methylacetophenone, 
4-chloroacetophenone, or 2-acetonaphthone, the reaction 
reacted smoothly and delivered the desired C-H bromination 
products in 82-87% yields (Table 3, 4d-4f). 

Table 4  Electrochemical C-H chlorinationa 

 

a Reaction conditions: carbon rod anode, nickel plate cathode, constant 

current = 12 mA, 1 or 3 (0.5 mmol), CCl4 (0.5 mmol), nBu4NBF4 (0.1 mmol), 

MeCN (10 mL), MeOH (1 mL), 75 oC, N2, 2.5 h, isolated yields. 

It is worth noting that this versatile electrochemical C-H 
halogenation protocol was not limited to the bromination with 
carbon tetrabromide. Indeed, carbon tetrachloride was identified 
as amenable halogenating agents as well, delivering the desired 
C-H chlorination products in moderate to good yields (Table 4, 
5a-5f). 

To gain some insights into the mechanism of this 
electrochemical C-H halogenation, some control experiments 
were conducted. First, cyclic voltammetry experiments were 
carried out (Figure S1-S3, See ESI for details). An oxidation peak of 
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1a was observed at 1.55 V (vs Ag/AgCl), whereas the reduction 
pecks of CBr4 and MeOH were observed at -0.67 V and -1.1 V (vs 
Ag/AgCl), respectively. This result indicates that CBr4 is very easily 
reduced under electrochemical conditions. On the basis of this 
experimental result and literature reports,[9] we believe that this 
reaction should begin with the cathodic reduction of halogenating 
reagents. To further verify this conjecture, the other easily 
reduced substrates,[10] such as CHBr3, CH2Br2, and CCl3Br were also 
employed to this electrochemical C-H halogenation system 
(Scheme 2). To our delight, in the reaction of 1a with CHBr3, 

CH2Br2, or CCl3Br, good to high yields of products were achieved 
under the standard reaction conditions, consistent with our 
hypothesis. Given that bromine ion and chlorine ion have a similar 
oxidation potential with 1a (Figure S3, See ESI for details), the 
cathodic reduction generated bromine ion or chlorine ion may be 
subsequently oxidized to molecular Br2 or Cl2. To clarify whether 
this reaction involved a molecular Br2 or Cl2 intermediate, the 
reaction of 1a with Br2 and Cl2 under the conditions of without 
current was carried out respectively and the C-H bromination 
product could be obtained in 89% yield, while no C-H chlorination 
product was detected (Scheme 2). This result indicates that 
molecular Br2 might be the key intermediate of C-H bromination, 
while molecular Cl2 might not be involved as the intermediate in 
C-H chlorination. In addition, when the reaction of 1a was carried 
out in the absence of halogenating reagents, the capture product 
6a was not detected (Scheme 2). This result indicates that 1a is 
first oxidized to the corresponding radical cation, followed by 
nucleophilic attack with bromine ion or chloride ion, can be ruled 
out. 

Scheme 2  Control experiments 

 

On the basis of the above experimental results and previous 
reports,[2q,9,10] a plausible mechanism for the electrochemical C-H 
C-H Halogenation is shown in Scheme 3. CBr4 is first reduced at 
the cathode to generate bromine ion and tribromomethyl radical. 
Then, the generated tribromomethyl radical abstracts a hydrogen 
atom from solvent to afford tribromomethane. In the meanwhile, 
the generated bromine ion is oxidized at the anode to generate 
molecular Br2. The reaction of 1a with molecular Br2 finally 
affords the corresponding C-H bromination product 2a. It is worth 
noting that the generated tribromomethane intermediate could 

be detected by GC-MS in the reaction mixture, which verifies the 
possibility of this mechanism. In addition, according to the above 
experimental results, the generated tribromomethane would also 
be reduced at the cathode and finally access to desired product 
2a. Notably, the mechanism of C-H chlorination and C-H 
bromination might be different. In C-H chlorination, the 
generated chlorine ion might be oxidized at the anode to 
generate chlorine radical instead of molecular Cl2. 

Scheme 3  Proposed mechanism 

 

Control experiments showed that CHBr3, CH2Br2, and CCl3Br 
were all suitable brominating reagents for the reaction. We 
subsequently investigated the substrate scope of the 
electrochemical C-H bromination using CHBr3, CH2Br2, and CCl3Br. 
It was found that imidazopyridines bearing aryl, alkyl, even -H 
groups at the C-2 position all delivered the corresponding C-H 
bromination products in good to excellent yields (Table 5). 
Moreover, α-carbonyl compounds, such as ethyl 
3-(4-methoxyphenyl)-3-oxopropanoate, were also amendable to 
this procedure, although 3.0 equiv. of brominating reagents were 
used. 

Table 5  Electrochemical C-H bromination with CHBr3, CH2Br2, and CCl3Bra 

 
a Reaction conditions: carbon rod anode, nickel plate cathode, constant 

current = 12 mA, 1 or 3 (0.5 mmol), [Br] (0.5 mmol), nBu4NBF4 (0.1 mmol), 

MeCN (10 mL), MeOH (1 mL), 75 oC, N2, 2.5 h, isolated yields. b [Br] (1.5 

mmol). 

Conclusions 

In conclusion, we have developed an efficient electrochemical 
C-H halogenation protocol using CBr4, CHBr3, CH2Br2, CCl3Br and 
CCl4 as the halogenating agents. A series of significant aryl and 
alkyl halides were prepared under external-oxidant-free reaction 
conditions. It is worth noting that this is the first example of 
activating CBr4, CHBr3, and CCl3Br under electrochemical 
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conditions. Importantly, in this reaction, not only anodic oxidation 
but also cathodic reduction is reconciled to synergistically 
construct C-X bond. In addition, this reaction can be easily 
scaled-up. 

Experimental 

In an oven-dried undivided three-necked bottle (25 mL) 
equipped with a stir bar, 2-phenylimidazo[1,2-a]pyridine (1a, 0.5 
mmol), carbon tetrabromide (0.5 mmol), and nBu4NBF4 (0.1 mmol) 
were combined and added. The bottle was equipped with 
graphite rod (ϕ 6 mm, about 18 mm immersion depth in solution) 
as the anode and nickel plate (15 mm × 15 mm × 1 mm) as the 
cathode and was then charged with nitrogen. Under the 
protection of N2, MeCN (10.0 mL) and MeOH (1.0 mL) were 
injected respectively into the tubes via syringes. The reaction 
mixture was stirred and electrolyzed at a constant current of 12 
mA at 75 oC for 2.5 h. When the reaction was finished, the pure 
product was obtained by flash column chromatography on silica 
gel. 

Supporting Information  

The supporting information for this article is available on the 
WWW under https://doi.org/10.1002/cjoc.2018xxxxx. 
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