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In order to develop a new class of anti-rheumatic drug which inhibits production of proinflammatory cyto-
kines such as TNFa, IL-1b, IL-6, and IL-8, a series of 3-pyridylpyrrole derivatives possessing a bicyclic tetra-
hydropyridine moiety at the 4-position of the pyrrole ring were synthesized and their pharmacological
activities were evaluated. The derivatives were found to have potent inhibitory activities on the production
of the cytokines both in vitro and in vivo. Among them, compound 4a, (S)-2-(4-fluorophenyl)-4-
(1,2,3,5,6,8a-hexahydroindolizin-7-yl)-3-(pyridin-4-yl)-1H-pyrrole (R-132811), achieved the most prom-
ising results in various in vitro and in vivo tests including several rheumatoid arthritis models ((i) inhibition
of p38a, p38b, p38c, and p38d MAP kinases: IC50 = 0.034, 0.572, >10, and >10 lM, respectively; (ii) inhibi-
tion of TNFa, IL-1b, IL-6, and IL-8 production in human whole blood: IC50 = 0.026, 0.020, 0.88, and 0.016 lM,
respectively; (iii) inhibition of LPS induced TNFa, IL-1b and IL-6 production in mice: ID50 = 0.93, 8.63, and
0.11 mg/kg, po, respectively; (iv) inhibition of anti-collagen antibody-induced arthritis in mice:
ID50 = 2.22 mg/kg, po; (v) inhibition of collagen-induced arthritis in mice: ID50 = 2.38 mg/kg, po; (vi) pro-
phylactic effect on adjuvant-induced arthritis in rats: ID50 = 3.1 mg/kg, po; (vii) therapeutic effect on adju-
vant-induced arthritis in rats: ID50 = 4.9 mg/kg, po; (viii) analgesic effect on adjuvant-induced arthritic pain
in rats: ID50 = 2.9 mg/kg, po). As a result, compound 4a was chosen as a candidate for further pre-clinical
studies.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
p38 mitogen-activated protein (MAP) kinase is an intracellular
serine/threonine (Ser/Thr) kinase that positively regulates the pro-
duction and action of several proinflammatory mediators, specifi-
cally the release of TNFa and IL-1b1 in response to stress.2 TNFa
and IL-1b are associated with the onset of inflammatory diseases
and several autoimmune diseases3 including rheumatoid arthritis
(RA),4 toxic shock syndrome, osteoarthritis, and inflammatory bo-
wel disease.5,6 The recent success of anti-cytokine biological agents
has demonstrated clinical benefits in the treatment of inflamma-
tory diseases.7 However, due to the well known disadvantages
common to these protein-based therapies, such as high cost and
subcutaneous or intravenous administration, orally active small
molecules that can effectively act as anti-cytokine agents would
clearly be of additional benefit to patients.6 Small molecule inhib-
itors of p38 MAP kinase have been shown to be efficacious in clin-
ical studies as alternatives for these biological agents.8
010 Published by Elsevier Ltd. All

: +81 3 5696 8609.
(A. Nakao).
We have previously reported that a series of 3-pyridylpyrrole
derivatives possessing N-alkyl- or N,a-dialkyltetrahydropyridine
moiety at the 4-position of the pyrrole ring potently inhibits the pro-
duction of the proinflammatory cytokine TNFa (Table 1),9 and its
in vitro and in vivo activities are suggested to be significantly af-
fected by steric hindrance around the N- and/or a-position of the
tetrahydropyridine (THPy) moiety and lipophilicity of the mole-
cules, respectively. Based on these results, we attempted to gain
superior compounds which exhibit more potent pharmacological
activities both in vitro and in vivo compared with the reported deriv-
atives. Compound 1m was selected as a lead compound for further
optimization because it showed the most potent in vitro activity.

Herein, we report the results of the optimization research that
have led us to the identification of the promising compound R-
132811 (4a), which was chosen as a candidate for further pre-clin-
ical studies to develop a new class of anti-rheumatic drug.

First of all, we designed a series of compound 1m derivatives, in
which an N-alkyl group is linked with an a-alkyl group to form a bicy-
clic THPy ring to reduce the steric hindrance and lipophilicity (Fig. 1).
rights reserved.
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Table 1
In vitro, in vivo activities and C log P values of N-substituted or N,a-disubstituted tetrahydropyridine derivatives

Compd R1 R2 R3 IC50
a (lM) ID50

b (mg/kg) C log Pc

1a Me H H 3.96 (2.63–5.97) 2.89 3.48
1b Et H H 1.21 (0.72–2.05) 6.67 4.01
1c i-Pr H H 0.98 (0.75–1.28) 6.18 4.32
1d n-Pr H H 0.52 (0.29–0.95) 6.75 4.54
1e n-Octyl H H 1.38 (0.77–2.48 45%d 7.19
1f t-Bu H H >10 —e 4.72
1g Bn H H >30 -e 5.27
1h Me di-Me di-Me 8.44 (5.26–13.54) 7.27 5.56
1i Me allyl H 48.7%f —e 4.58
1j Me Bn H 30.8%f —e 5.57
1k Me Me H 0.63 (0.42–0.93) 1.42 3.83
1l Et Me H 1.61 (0.94–2.75) 5.28 4.53
1m n-Pr Me H 0.44 (0.32–0.61) 2.79 5.06

a Inhibition of LPS-induced TNFa production in human whole blood. Results are given as mean and SD of three to four determinations.
b Inhibition of LPS-induced TNFa production in mice N = 5.
c C log P values calculated using Pallas� (INFOCOM CORPORATION).
d % Inhibition at 20 mg/kg.
e Not tested.
f Inhibition at 10 lM.

Scheme 1. Reagents and conditions: (a) n-BuLi, THF, �78 �C, then bicyclic
aminoketone derivatives, and then rt; (b) TFA, CH2Cl2, rt, then TBAF, THF, rt.
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The derivatives with the bicyclic THPy ring (3a–d) were synthe-
sized in accordance with the established synthetic route, which has
been reported previously (Scheme 1).10 Introduction of the bicyclic
THPy group to the 4-position of the pyrrole ring was carried out by
bromine–lithium exchange of compound 2, followed by 1,2-addi-
tion with bicyclic aminoketone derivatives to form a tertiary alco-
hol. Subsequent dehydroxylation of the tertiary alcohol was carried
out by exposure to trifluoroacetic acid (TFA) concurrently with
deprotection of a triisopropylsilyl (TIPS) group with tetrabutylam-
monium fluoride (TBAF) to give the bicyclic THPy derivative 3a, b, c
or d. Regioisomers 3a and 3b were separated11 by silica gel column
chromatography and their structures were determined by mass
fragmentation studies (electron ionization method: EI-MS)
(Scheme 2). Regioisomers 3c and 3d also were separated and
determined in a similar manner.

The bicyclic THPy derivatives 3a–d have two stereoisomers due
to an asymmetric center at the a-position of the bicyclic THPy moi-
ety. We separated the two stereoisomers of compound 3c by a pre-
parative HPLC method using a chiral column to gain the optically
pure enantiomers 4a (1st peak) and 4b (2nd peak) (Scheme 3). In
order to determine the absolute configuration of those enantio-
mers, one of them was synthesized from enantiomerically enriched
(8aS)-hexahydroindolizin-7(1H)-one 5.12 Chiral HPLC analysis indi-
cated that the synthesized compound corresponds with enantio-
mer 4a. Thus, it was confirmed that enantiomer 4a has an (S)-
configuration (Scheme 4), and therefore enantiomer 4b has an
(R)-configuration.
Figure 1.
The inhibitory activities of the bicyclic THPy derivatives on LPS-
induced TNFa production were evaluated in vitro and in vivo.9,10

Their IC50s, ID50s and C log Ps13 are summarized together with
those of compound 1m in Table 2.

Compound 3a, which has a six-membered ring within the bicy-
clic THPy moiety and a lower C log P value (4.23), showed more po-
tent in vitro and in vivo activities than those of the corresponding
monocyclic THPy analog 1m (IC50: 0.31 vs 0.44 lM; ID50: 2.27 vs
2.79 mg/kg). Compound 3c with a five-membered ring and further
lowered C log P value (3.67) showed much more potent in vitro and
in vivo activities than those of the corresponding monocyclic THPy
analog, compound 1l (IC50: 0.042 vs 1.61 lM; ID50: 1.09 vs
5.28 mg/kg). Compound 3c exceeded even compound 3a in both
in vitro and in vivo activities (IC50: 0.042 vs 0.31 lM; ID50: 1.09
vs 2.27 mg/kg). In addition, it is noteworthy that the in vitro activ-
ity of compound 3c was sevenfold as potent as that of compound
3a. This remarkable increase in the in vitro activity of compound
3c is supposed to be mainly attributed to further reduction of the
steric hindrance due to the five-membered ring formation in its
bicyclic THPy moiety. The bicyclic THPy ring of compound 3c is
thought to have a more rigid conformation than that of compound



Scheme 2. Proposed pathway for generation of m/z 344 from compound 3a and generation of m/z 290 from compound 3b.

Table 2
In vitro, in vivo activities and C log P values of bicyclic tetrahydropyridine derivatives

Compd R IC50
a (lM) ID50

b (mg/kg) C log Pc

1m 0.44 (0.32–0.61) 2.79 5.06

3a 0.31 (0.26–0.38) 2.27 4.23

3b 0.81 (0.59–1.10) 3.55 4.23

1l 1.61 (0.94–2.75) 5.28 4.53

3c 0.042 (0.028–0.063) 1.09 3.67

3d 0.60 (0.40–0.91) 2.85 3.67

a Inhibition of LPS-induced TNFa production in human whole blood. Results are
given as mean and SD of three to four determinations.

b Inhibition of LPS-induced TNFa production in mice N = 5.
c C log P values calculated using Pallas� (INFOCOM CORPORATION).

Scheme 3. Reagents and conditions: (a) HPLC separation. Column, CHIRALPAK AD
(U 4.6 � 250 mm, DAICEL CHEMICAL INDUSTRIES, LTD, Japan), eluent with n-
hexane/EtOH 80:20. The flow rate was 1.0 mL/min and the temperature was
adjusted to 40 �C. UV detection was performed at 254 nm.

Scheme 4. Reagents and conditions: (a) n-BuLi, THF, �78 �C, then (8aS)-hexahy-
droindolizin-7(1H)-one, and then rt; (b) TFA, CH2Cl2, rt, then TBAF, THF, rt.
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3a because it contains a five-membered ring. That rigid conforma-
tion of the bicyclic THPy moiety might also contribute to the excel-
lent in vitro activity of compound 3c. The increase in the in vivo
activities of compound 3a and 3c is probably due to both the in-
creased in vitro activity and the improved pharmacokinetic charac-
ter brought about by the lower lipophilicity.

Compounds 3b and 3d are regioisomers of compounds 3a and
3c, respectively, and they are distinguished from their counterparts
based on the position of C–C double bond within their bicyclic
THPy rings. Both compounds 3b and 3d showed lower in vitro
and in vivo activities compared with their counterpart, as expected
based on the previous letter.9
Biological activities of compounds 3c (racemate), 4a ((S)-enan-
tiomer) and 4b ((R)-enantiomer) were examined (Table 3).
(S)-Enantiomer 4a was found to be much more active than (R)-
enantiomer 4b, that is (S)-enantiomer 4a was 40- and 7-fold as po-
tent as (R)-enantiomer 4b in vitro and in vivo, respectively.

In order to assess the potential of compound 4a for a novel type
of anti-rheumatic drug, we performed a variety of pharmacological
tests related to proinflammatory cytokine production and rheuma-
toid arthritis (Table 4).

There have been four isoforms of p38 MAP kinase, namely, a-,
b-, c- and d-isoforms,14 that have been identified so far. Compound
4a inhibited a-isoform potently (IC50 = 0.034 lM) and b-isoform
weakly (IC50 = 0.572 lM). On the other hand, it inhibited neither



Table 3
In vitro and in vivo activities of hexahydroindolizine derivatives 3c, 4a, and 4b

Compd R IC50
a (lM) ID50

b (mg/kg)

3c 0.042 (0.028–0.063) 1.09

4a 0.026 (0.018–0.041) 0.93

4b 49%c 6.59

a Inhibition of LPS-induced TNFa production in human whole blood. Results are
given as mean and SD of three to four determinations.

b Inhibition of LPS-induced TNFa production in mice N = 5.
c Inhibition at 1 lM.
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c-isoform nor d-isoform even at 10 lM.15 Compound 4a potently
inhibited not only the production of TNFa (IC50 = 0.026 lM), but
also that of other proinflammatory cytokines such as IL-1b, IL-6,
and IL-816 in vitro (IC50 = 0.020, 0.88, and 0.016 lM, respectively).
Also in the in vivo activities, compound 4a potently inhibited the
production of TNFa10,17 and IL-619 (ID50 = 0.93 and 0.11 mg/kg,
respectively). Compound 4a was effective on both anti-collagen
antibody-induced arthritis20 and collagen-induced arthritis in
mice16,21 (ID50 = 2.22 and 2.38 mg/kg, respectively). Furthermore,
compound 4a demonstrated not only prophylactic effect, but also
therapeutic effect on adjuvant arthritis in rats22,23 (ID50 = 3.1 mg/
Table 4
Representative results of pharmacological tests on compound 4a

Biological evaluations

Inhibition of p38 MAP kinasea IC50 (lM)

Inhibition of LPS-induced cytokine production in human whole blooda IC50 (lM)

Inhibition of LPS-induced cytokine production in miceb ID50 (mg/kg)

Inhibition of anti-collagen antibody-induced arthritis in miceb,20 ID50 (mg/kg)
Inhibition of collagen-induced arthritis in miceb,5,16,21 ID50 (mg/kg)
Prophylactic effect on adjuvant arthritis in ratsb,22 ID50 (mg/kg)
Therapeutic effect on adjuvant arthritis in ratsb,23 ID50 (mg/kg)
Analgesic effect on adjuvant-induced arthritic pain in ratsb,24 ID50 (mg/kg)

a Results are given as mean and SD of three to four determinations.
b N = 5.
c No inhibition at 10 lM.
kg and 4.9 mg/kg, respectively). Interestingly, compound 4a also
showed analgesic effect on adjuvant-induced arthritic pain in
rats24–26 (ID50 = 2.9 mg/kg). Thus, compound 4a was found to
selectively inhibit p38a MAP kinase, block the production of the
proinflammatory cytokines such as TNFa, IL-1b, IL-6 and IL-8,
and exhibit the inhibitory, prophylactic, therapeutic or analgesic
effect on rheumatoid arthritis in animals.

In order to develop a new class of anti-rheumatic drug, which
inhibits the production of the proinflammatory cytokines such as
TNFa, IL-1b, IL-6, and IL-8, we synthesized a series of 3-pyridylpyr-
role derivatives possessing a bicyclic THPy moiety at the 4-position
of the pyrrole ring and evaluated its pharmacological activities.
Compound 3c with a specific bicyclic THPy ring, namely, the hexahy-
droindolizine ring, showed excellent in vitro and in vivo activities.
(S)-Enantiomer 4a separated from racemic compound 3c showed
much more potent inhibitory activities than those of (R)-enantiomer
4b. We evaluated compound 4a in various pharmacological assay
systems related to proinflammatory cytokine production and rheu-
matoid arthritis, and thus gained promising results. Therefore,
compound 4a (R-132811) was chosen as the candidate for further
pre-clinical studies such as pharmacological, pharmacokinetic,
toxicological, and physicochemical studies.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.bmcl.2010.06.122.
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