Table 1. Compounds 3 Prepared^a

Sub-	RSO₂F	Time (h)	Prod- uct	Yield ^b (%)	bp (°C)°		
strate					found	reported ⁵	
1a	2a	8	3a	70	78-80	80	
1b	2a	8	3b	78	131-133	132	
1c	2a	8	3c	76	132-133	132	
1d	2a	8	3d	71	153-154	154	
1e	2a	8	3e	80	152-154	154	
	2b	8	3e	75	153-154	154	
1f	2b	20	3f	70	228-229	230	
1g	2a	15	3g	66	mp 79-80°C	mp 80°C	

- ^a All reactions were carried out at 80°C under nitrogen.
- ^b Isolated yield based on 1.
- ^c Uncorrected.

One-Pot Conversion of Phenols to Arenes

Qing-Yun Chen,* Ya-Bo He

Shanghai Institute of Organic Chemistry, Academic Sinica, 345 Lingling Lu, Shanghai, People's Republic of China

In the presence of a fluoroalkanesulfonyl fluoride and a catalytic amount of bis(triphenylphosphine)palladium dichloride, phenols reacted with triethylammonium formate in triethylamine to give arenes. Similarly, phenols reacted with alkynes or alkenes in triethylamine providing alkynyl- or alkenylarenes, respectively.

Recently, we¹ and others² reported that palladium could insert into the carbon—oxygen bond of phenyl fluoroalkanesulfonate (RSO₂OPh), thus the Heck reaction was accomplished by treating RSO₂OPh with alkynes or alkenes in the presence of palladium.^{1a} Similarly, the removal of the hydroxy group from phenols via palladium-catalyzed reduction of RSO₂OAr by trialkylammonium formate could be carried out successfully, ^{1b,2} which was easier than that by using molecular hydrogen reported.³ As an extension of our work, we wish to present a simple conversion of phenols to arenes by a one-pot reaction.

Phenols 1 reacted with fluoroalkanesulfonyl fluoride 2⁴ and triethylammonium formate catalyzed by bis(triphenylphosphine)palladium dichloride in triethylamine giving arenes in excellent yield (Table 1).

2	R		2	K		
a b	HCF ₂ CF ₂ OO n-C ₈ F ₁₇	CF ₂ CF ₂	c d	(- 2/0 2 2		
1, 3	Y	1, 3	Y	1, 3	Y	
a b c	H 4-Cl 2-Cl	d e	4-MeO 3-MeO	f g	2-MeO, 4-CHO 2,3-(CH=CH) ₂	

OH .	RSO ₂ F (2 1/Et ₃ N Pd(PPh ₃) ₂ Cl ₂ /DMF	R¹C≡CH 40-80°C 17-20.5 h	R¹
1		R ² CH=CH ₂ 80 °C, 24h 50-54 %	Y

4	Y	\mathbb{R}^1	5	Y	R ²
a	2-C1	CH ₂ OMe	a	Н	CO ₂ Et
b	3-MeO	Ph	b	3-MeO	CO ₂ Et
c	4-C1	Ph			
d	3-MeO	<i>n</i> -Bu			

Table 2. Dehydroxy-alkynylation and -alkenylation of Phenols

RSO ₂ F	Reaction Cond	Prod-	Yielda	
	Temp. (°C)	Time (h)	uct	(%)
	80	19	4a	63
2b	80	18	4a	61
2c	80	18	4a	69
2d	80	18	4a	60
2a	80	17	4b	68
2a	80	18	4c	62
2a	80	18	4d	68
2a	55	20.5	4d	67
2a	40	20.5	4d	54
2a	80	20	4 e	63
2a	80	24	5a	50
2a	80	24	5b	54

^a Isolated yield.

Table 3. Physical and Spectral Data for Compounds 4 and 5 Prepared

Prod- uct	mp (°C) or bp (°C/Torr) ^a	Molecular Formula ^b or Lit. Data	IR (film) or (KBr) ^c v (cm ⁻¹)	¹ H-NMR (solvent/TMS) ^d δ , $J(Hz)$	MS ^e m/z (M ⁺)
4a	oil	C ₁₀ H ₉ ClO (180.6)	3071, 2230, 1592, 1150	CCl ₄ : 3.38 (s, 3H); 4.26 (s, 2H); 6.96–7.86 (m, 4H)	180
4b	74-6	$C_{15}H_{12}O$ (208.2)	3010, 2210, 1230, 860	CCl ₄ : 3.60 (s, 3H); 6.60–7.40 (m, 9H)	208
4c	79-81.5	81.5-826	3049, 2213, 1590	CCl ₄ : 6.85–7.55 (m)	212
4d	oil	$C_{13}H_{16}O$ (188.1)	3072, 2230, 1576, 1287	CCl ₄ : 0.53–1.70 (m, 7 H); 2.03–2.53 (m, 2H); 3.64 (s, 3 H); 6.47–7.24 (m, 4H)	188
4e	224-5	$C_{26}H_{26}O$ (354.3)	3054, 2205, 1731, 1595	CDCl ₃ : 0.90 (s, 3H); 1.03-3.37 (m, 15H); 7.09-7.97 (m, 8H)	354
5a	121/3	123/37	3030, 1712, 1640, 1580	CCl_4 : 1.22 (t, 3H); 4.13 (q, 2H); 6.30 (d, $J = 16$, 1H); 7.12~7.51 (m, 5H); 7.52 (d, $J = 16$, 1H)	176
5b	185–7/15	185–186/15 ⁸	3060, 1711, 1638, 1261	CCl _a : 1.18 (t, 3H); 3.63 (s, 3H); 4.07 (q, 2H); 6.21 (d, $J = 16$, 1H); 7.26–7.47 (m, 4H); 7.47 (d, $J = 16$, 1H)	206

Similarly, in the presence of fluoroalkanesulfonyl fluoride, phenols 1 also reacted with alkynes or alkenes catalyzed by bis(triphenylphosphine)palladium dichloride in triethylamine to provide alkynylarenes 4 or alkenylarenes 5, respectively (Table 2).

In the above reactions, the reactants, catalyst, and solvent were added in one portion. Triethylamine could be used as both base and solvent. The products were obtained without isolating arenyl fluoroalkanesulfonate. The variation in R of fluoroalkanesulfonyl fluoride and the reaction temperature seemed to have little influence on the yields as shown in Table 2.

The novel method reported is expected to be useful for the hitherto difficult transformation of phenols to the corresponding arenes, alkynylarenes, and alkenylarene especially useful in syntheses of natural products. As an example, we chose estrone as the substrate, which reacted with phenylacetylene to give 3phenylethynylestra-1,3,5(10)trien-17-one (4e) in good yield.

Arenes 3; General Procedure:

A mixture of 1 (1.5 mmol), triethylamine (2 mL), bis(triphenylphosphine)palladium dichloride (0.075 mol), fluoroalkanesulfonyl fluoride 2 (1.7 mmol) and DMF (2 mL) is placed in a Pyrex tube fitted with a screw cap under N₂. Formic acid (3 mmol) is injected in one portion. The mixture is stirred at 80°C for the time given in Table 1, and quenched by adding 0.5 N HCl (15 mL), extracted with ether (3×25 mL), washed with water until neutral, dried (Na₂SO₄), and evaporated. Distillation under atmospheric pressure or column chromatography on silica gel (petroleum ether used as eluent) gives the products 3.

Alkynylarenes 4 or alkenylarenes 5; General Procedure:

A mixture of phenols 1 (2 mmol), triethylamine (2 mL), bis(triphenylphosphine)palladium dichloride (0.12 mmol), fluoroalkanesulfonyl fluoride 2 (2.2 mmol), the appropriate alkyne or alkene (3 mmol), and DMF (2 mL) is placed in a Pyrex tube fitted with a screw cap under N₂. The mixture is stirred for the reaction temperature and time given in Table 2 and quenched by adding 0.5 N HCl (15 mL), extracted with ether $(3 \times 25 \text{ mL})$, washed with water until neutral, dried (Na₂SO₄) and evaporated. Column chromatography of the residue on silica gel using petroleum ether/EtOAc (10:1) as eluent provides the products 4 or 5.

Received: 17 November 1987; revised: 1 July 1988

- (3) Subramanian, L.R., Martinez, A.G., Fernandez, A.H., Alvarez, R.M. Synthesis 1984, 481.
- HCF₂CF₂OCF₂CF₂SO₂F (2a) was easily obtained by the reduction of ICF2CF2OCF2CF2SO2F, which, a commercial product in China, was prepared according to references:

Bargigia, G. A., Laporiccio, G., Pianca, M. J. Fluorine Chem. 1982, 19, 403.

Perfluorosulfonic Acid Group, Academia Sinica, Scientic Sinica(B) 1978, 21, 773.

- (5) Vogel's Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, Longman, London, 1978, pp. 1160, 1180, 1186, 1192.
- (6) Newman, M.S., Reid, D.E. J. Org. Chem. 1958, 23, 665.
- Otsu, T., Yamada, T., Nozaki, T. Kogyo Kagaku Zasshi 1967, 70, 1941; C.A. 1968, 68, 114995.
- Dictionary of Organic Compounds, 5th ed., Chapman and Hall, New York, M-00700.

Satisfactory microanalyses obtained: $C \pm 0.34$, $H \pm 0.28$.

Recorded on a Perkin-Elmer 983 spectrophotometer.

Recorded on EM-360 NMR spectrometer (60 MHz).

Mass spectra were taken on GC-MS-4021.

⁽¹⁾ a) Chen, Q.Y., Yang, Z.Y. Tetrahedron Lett. 1986, 27, 1171. b) Chen, Q.Y., He, Y.B., Yang, Z.Y. J. Chem. Soc. Chem. Commun. 1986, 1452.

Cacchi, S., Ciattini, P.G., Morera, E., Ortar, G. Tetrahedron Lett. 1986, 27, 3931.

1988

Chen, Q.-Y., He, Y.-B. Synthesis 1988, 896. On page 897 the amount of Pd(PPh₃)₂Cl₂ in the general procedure for Arenes 3 should be 0.075 mmol.

1989

- Bhaha, S.K., Hajdu, J. Synthesis 1989, 16. Throughout the paper thioacetyl should be replaced by acetylthio. Hence 7 is named 2-S-acetyl-1-O-hexadecyl-1-2-thioglycerol.
- Burger, A., Hetru, C., Luu, B. Synthesis 1989, 93. On page 94 the formulae of the Horner-Emmons reagent used is:

and the correct name in the experimental section p. 96 is: diethyl dichloromethylphosphonate.

Schinzer, D. Synthesis 1989, 179. On page 180 compound 14b is (2R, 3RS, 4SR)-3-hydroxy-2,4,6-trimethyl-5-hepten-oyltriethylsilane.

Cristau, H.J., Fonte, M., Torreilles, E. *Synthesis* **1989**, 301. *On page* 301 compound **7** is 2-(2-benzylaminoethoxy)-1-[(2-methyl-1,3-dioxolan-2-yl)methyl]ethyltriphenyl-phosphonium iodide.

Zhou, W.-S., Zhou, Y.-P., Jiang, B. Synthesis **1989**, 426. On page 427 compound **8** is (22E, 24R)- 3α ,5-cyclo- 5α -ergosta-7.22-dien-6-one and **9** is (22E, 24R)- 3α 5-cyclo- 5α -ergost-22-en-6-one.

Stuart, J.G., Nicholas, K.M. Synthesis 1989, 454. In the title abstract and text propargyl nitriles should read propargyl cyanides.

Schick, H., Eichhorn, I., Synthesis 1989, 477. On page 481 the final entry to Table 4 should read: $CH_2CH = CH - (CH_2)_3CO_2Me$