Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and biological activity of 2*H*-quinolizin-2-one based $p38\alpha$ MAP kinase inhibitors

Robert M. Tynebor^{a,*}, Meng-Hsin Chen^a, Swaminathan R. Natarajan^a, Edward A. O'Neill^b, James E. Thompson^b, Catherine E. Fitzgerald^b, Stephen J. O'Keefe^b, James B. Doherty^a

^a Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA
^b Department of Inflammation Research, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

ARTICLE INFO

Article history: Received 8 February 2010 Revised 16 March 2010 Accepted 17 March 2010 Available online 21 March 2010

Keywords: p38¤ inhibitors MAP kinase

ABSTRACT

The development and synthesis of potent $p38\alpha$ MAP kinase inhibitors containing a 2*H*-quinolizin-2-one platform is described. Evolution of the 2*H*-quinolizin-2-one series from an early lead to solving off target activity and pharmacokinetic issues is also discussed.

© 2010 Elsevier Ltd. All rights reserved.

Over the last decade the pharmaceutical industry invested significant resources in developing a therapy to regulate tumor necrosis factor (TNF- α) for the treatment of such indications as rheumatoid arthritis, psoriatic arthritis, and inflammatory bowel disease.¹ Current TNF- α treatments include monoclonal antibodies Infliximab (Remicade[®]), Adalimumab (Humira[®]), and the fusion protein Etanercept (Enbrel[®]).² Although current therapies successfully reduce TNF- α levels, long term patient compliance is compromised by safety, cost, and/or efficacy.^{1,3} Currently no small molecule therapy has successfully reached the market.²

It has been demonstrated that inhibiting p38x mitogen-activated protein (MAP) kinase delays the onset of joint disease in animal models of arthritis by arresting the over production of pro-inflammatory cytokines such as TNF- α .⁴ In peripheral mononuclear blood cells, the p38 MAP kinase pathway is activated by a variety of external stress stimuli, such as heat shock, osmotic stress, lipopolysaccharide (LPS) and other cytokines.⁵ Cell surface receptors recognize these stress stimuli and initiate a signal transduction cascade that proceeds through p38 MAP kinase. The upstream activators of p38 MAP kinase are MKK3 and MKK6 while the downstream substrates include MAPKAP kinase-2 and heat shock protein (HSP)-27. The end result is the production of proinflammatory cytokines, edema, and joint destruction. Inhibiting of the p38 α pathway is therefore expected to down regulate TNF- α production and afford an opportunity to slow the progression of TNF- α mediated inflammatory diseases. In our laboratory

we have investigated a new structural class of potent and selective p38 inhibitors utilizing a 6-(2,4-difluorophenyl)-1-phenyl-2*H*-quinolizin-2-one (Fig. 1) scaffold as a pharmacophore, which is the subject of this communication.

Small molecule p38x inhibitors made a structural transition from the tetrasubstituted imidazole series $(2)^6$ to pyrimido pyridazinone derived compounds with the discovery of VX-745 (3) (Fig. 2).⁷ Investigations into the binding mode of **3** revealed several unique features including a novel induced fit by causing a rotation or 'flip' of the peptide bond between Met-109 and Gly-110. As shown in Figure 2, the tetrasubstituted imidazoles bind to the $p38\alpha$ active site by utilizing a pyrimidine nitrogen to hydrogen bond with Met-109 while **3** binds to the p38 α active site by using a carbonyl group to hydrogen bond with Met-109. The second available lone pair on the carbonyl oxygen induces a unique 'flip' of the peptide between Met-109 and Gly-110. The newly reorganized enzyme conformation is then stabilized by the uniquely polar scaffold of **3**.^{8,9} MAP kinases outside the p38 α , β , γ isoform family fail to adopt the 'flipped' conformation due to larger side chains present at the amino acid residue 110 that make proper enzyme rotation energetically unfavorable. As a result, 3 possessed unprecedented selectivity over a broad range of kinases as well as other closely related members of the MAP kinases family.⁹

It was also hypothesized that the piperidine of **2** interacts with Asp-168 via a water bridged hydrogen bonding interaction. This hypothesis helped drive binding and functional potency in the quinazolinone (**4**) series by utilizing a piperazine to interact with Asp-168. Although functional activity and physical properties were enhanced by the basic amine, such inhibitors were plagued

^{*} Corresponding author. Tel.: +1 215 652 3636; fax: +1 215 652 3971. *E-mail address*: Robert_tynebor@merck.com (R.M. Tynebor).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.03.069

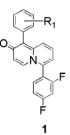


Figure 1. 6-(2,4-Difluorophenyl)-1-phenyl-2H-quinolizin-2-one.

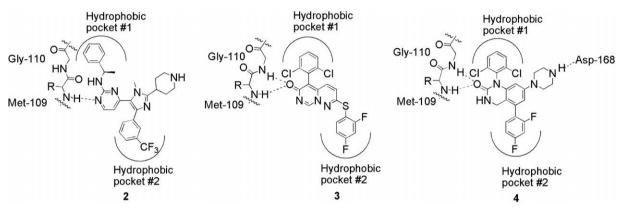


Figure 2. p38a binding schematic for tetrasubstituted imidazole 2, 3, and quinazolinone 4.

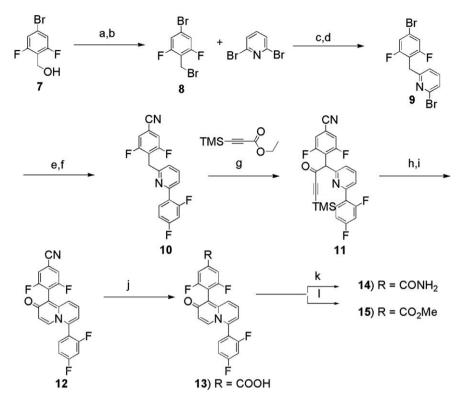
with potent ion channel activity. Evolution of small molecule $p38\alpha$ inhibitors focused on replacing the piperazine group of **4**.

Previous research revealed the entire piperazine substituent could be replaced with a simple amino group without a significant loss in functional potency.¹⁰ However this required that the core template had sufficient polarity to achieve good cell potency. Replacing the urea derived core of **4** with a naphthyridinone and the piperazine with an amino group lowered log *D* for compound **5** while maintaining good activity in the LPS stimulated THP-1 cells and human whole blood (hWB) TNF- α release functional assays. Encouraged by the success of **5** we hypothesized that the isomeric quinolizin-2-one **6** derivative would sufficiently increase the core polarity and dipole moment to excise the amine of **5**. In the event, quinolizin-2-one **6** increased scaffold polarity as indicated by the lower log *D* value in Table 1, producing biological activity comparable to compounds **4** and **5**.

Removing the basic amine from compounds **4** and **5** successfully reduced MK-499 activity of quinolizin-2-one **6** to less than 20 μ M, but unfortunately other liabilities such as pregnane X receptor (PXR) activation (EC₅₀ 3.3 μ M) and a long half life in dog (20 h) and monkey (>100 h) precluded further development of **6**. Previous research indicated chemically diverse substituted A-rings were well tolerated.¹⁵ Therefore, we sought to introduce chemically diversity to the A-ring position in an attempt to reduce PXR activation and improve pharmacokinetic properties.

The first series of A-ring modified quinolizin-2-one derivatives focused on the 2,4,6 substitution pattern. Synthesis of such derivatives began with preparation of benzyl bromide **8** via a reaction of the mesylate derived from **7** with LiBr (Scheme 1). Treatment of bromide **8** with activated zinc generated the zinc bromide derivative in situ which was coupled with 2,6 dibromopyridine to yield diaryl methylene **9**. Suzuki coupling between pyridyl bromide **9**

		$\rightarrow \bigvee_{N}^{F} \bigvee_{N}^{F} \bigvee_{N}^{H_{2}} \bigvee_{N}^{F} \bigvee_{N}^{F$	F A Ring		
	F	F	F C Ring		
	4	5	6		
$p38\alpha^{6,11}$ IC ₅₀ (nM)	THP-I/TNF- α^{12} IC ₅₀ (nM)	hWB/TNF- $\alpha^6 IC_{50} (nM)$	Log D	$Ca^{2+} IC_{50}{}^a (\mu M)$	i Kr ^b K_i (μ M)


	p38α ^{6,11} IC ₅₀ (nM)	THP-I/TNF- α^{12} IC ₅₀ (nM)	hWB/TNF- $\alpha^6 IC_{50}$ (nM)	Log D	$Ca^{2+} IC_{50}{}^{a} (\mu M)$	$i K r^{b} K_{i} (\mu M)$
4	2.6	4.0	76	4.2	0.94	0.87
5	0.6	1.0	34.3	2.7	4.6	5.1
6	7.1	5.6	75.5	2.5	>30	>20

^a Inhibition of diltiazem binding.¹³

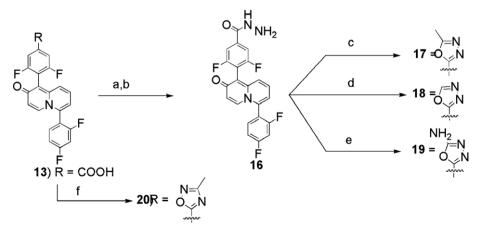
Table 1

Evolution of p38a inhibitors

^b Inhibition of MK-499 binding to hERG in HEK293 cells.¹⁴

Scheme 1. Synthesis of 2,4,6 substituted A-ring 2*H*-quinolizin-2-one derivatives. Reagents and conditions: (a) MsCI, TEA, CH₂CI₂, 0 °C warm to rt; (b) LiBr, DMF, 90 °C 45 min, 75% two steps; (c) Zn, THF, 0 °C warm to rt, 1 h; (d) Pd(PPh₃)₄ 90 °C, 1 h, 68% two steps; (e) 2,4 difluoro phenyl boronic acid, Pd(PPh₃)₄, toluene/EtOH/2 M Na₂CO₃ (10:1:1), 89%; (f) Zn(CN)₂, tris(dibenzylideneacetone)dipalladium, 1,1'-bis(diphenylphosphino)ferrocene, DMF/H₂O (100:1), 120 °C, 1 h, 96%; (g) LiHMDS, -78 °C, 1 h, THF, 84%; (h) TBAF, THF, 0 °C, 89%; (i) NMP, 90 °C, 38%; (j) 2 N KOH, dioxane, 90 °C, 24 h, 83%; (k) EDC, hobt, NH₄OH, NMP, 75%; (l) oxalyl chloride, MeOH, 0 °C, 90%.

 Table 2


 Biological activity of 2,4,6 substituted A-ring 2H-quinolizin-2-one derivatives

	p38α IC ₅₀ (nM)	THP-I/TNF- α^{12} IC ₅₀ (nM)	hWB/TNF-α ⁶ IC ₅₀ (nM)	PXR EC ₅₀ (µM)
12	1.5	6490	N/A	>30
14	20	180	980	>30
15	1.5	6490	N/A	>30

and 2,4 difluoro phenyl boronic acid was used to introduce the C-ring. The nitrile of **10** was installed via a $Pd_2(dba)_3$, dppf, and zinc cyanide coupling with the A-ring bromide. LiHMDS generated the

benzylic anion of **10** and was quenched with TMS propenyl ethyl ester to yield the protected diarylbutynone **11**. Removal of the TMS protecting group and thermal cyclization generated the 2*H*-quinolizin-2-one platform **12**.¹⁶

Nitrile **12** not only served as a valuable synthetic intermediate for future manipulations but also eliminated the PXR activation associated with compound **6** (Table 2). Although the nitrile possessed only weak functional activity, this discovery encouraged the exploration of other heteroatom containing functional groups at this position. Hydrolysis of nitrile **12** to carboxylic acid **13** and EDC coupling with ammonium hydroxide yielded amide **14**. Amide **14** maintained moderate $p38\alpha$ enzyme potency and improved

Scheme 2. Synthesis of 2,4,6 substituted A-ring 2*H*-quinolizin-2-one bioisostere derivatives. Reagents and conditions: (a) oxalyl chloride, DMF, DCM, 0 °C, quant.; (b) N₂H₄, CH₂Cl₂, rt, quant.; (c) trimethylorthoacetate, 120 °C, MeOH, 1.5 h; (d) triethylorthoformate, 110 °C, MeOH, 2 h, three step yield 6%; (e) cyanogen bromide, MeOH, 90 °C, 2 h, three step yield 9%; (f) EDC, hobt, *N*'-hydroxyethanimidamide, NMP, 90 °C, 6 h, 16%.

Table 3

Biological activity of 2,4,6 substituted A-ring 2H-quinolizin-2-one bioisostere derivatives

	p38α IC ₅₀ (nM)	THP-I/TNF-α ¹² IC ₅₀ (nM)	hWB/TNF-a ⁶ IC ₅₀ (nM)	PXR EC ₅₀ (µM)
17	14	950	2660	>30
18	5.3	265	775	>30
19	6.8	270	1580	>30
20	8.8	430	690	>30

whole blood potency to sub micromolar levels. Methyl ester **15** possessed 1.5 nM p38 α activity but failed to improve functional activity, therefore it was believed that metabolic stability of compounds **12**, **14**, and **15** were responsible for the large shift in functional activity. As a result, we explored suitable bioisostere replacements, such as oxadiazoles, for compounds **12**, **14**, and **15**.

Oxadiazole bioisosteres **17–20** were synthesized from carboxylic acid intermediate **13** (Scheme 2). Treatment of acid **13** with oxalyl chloride and catalytic amounts of DMF yielded the acid chloride derivative, which reacted with hydrazine hydrate to provide benzhydrazide **16**. The crude benzhydrazide intermediate was refluxed in trimethyl orthoacetate to yield oxadiazole **17** in low yield. Similarly, oxadiazoles **18** and **19** were synthesized from intermediate **16** using triethylorthoformate and cyanogen bromide, respectively. EDC/hobt amide coupling between **13** and *N'*-hydroxyethanimidamide and cyclization yielded oxadiazole **20** in a one pot reaction.

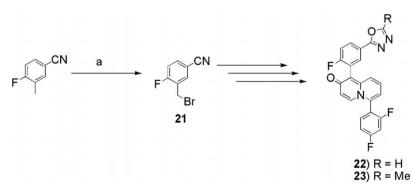
Oxadiazole bioisosteres **17–20** retained an excellent PXR profile (EC₅₀ >30 μ M) and improved WB and THP-1 potency relative to compounds **14** and **15**, but possessed functional activity several orders of magnitude weaker than lead compound **6** (Table 3). A-rings possessing a 4 substituted oxadiazole demonstrated that PXR activity can be successfully eliminated while retaining p38 α enzyme potency, however other substitution patterns were explored to also increase functional activity. Previous manuscripts indicated an ortho substituted A-ring was critical for maintaining good enzyme potency.¹⁵ Shifting the oxadiazole to the 5-position could exploit this group's PXR reducing properties and take advantage of the potency enhancing effects associated with a 2 fluoro group.

2,5 Substituted analogs **22** and **23** were synthesized by brominating 4-fluoro-3-methylbenzonitrile with *N*-bromosuccinimide and benzoyl peroxide to yield **21** (Scheme 3). Using a similar synthetic protocol as Schemes 1 and 2, bromide **21** was synthetically modified to yield derivatives **22–23**.

2,5 Substituted analogs possessed PXR activity and enzyme potency comparable to the 2,4,6 substituted series, while functional activity dramatically improved (Table 4). For example, THP-1 and WB activity of oxadiazoles **22** and **23** increased 10–30-fold and 15–60-fold, respectively when compared to 2,4,6 substituted analogs **17** and **18**. As with other 2*H*-quinolizin-2-one derivatives, compounds **22** and **23** possessed Ca and *i*Kr ion channel activity greater then 20 μ M and 30 μ M, respectively.

Pharmacokinetic properties of compounds **22** and **23** were evaluated in several species (Table 5). Compound **22** possessed good oral bioavailability, low clearance, and high AUC in all species tested. However, the half life of compound **22** in the dog IV study was still comparable to lead compound **6**. Compound **23** also possessed good oral bioavailability, low clearance, and high AUC, and a shorter half life in the dog pharmacokinetic studies. Therefore, compound **23** possessed the most desirable profile with potent functional activity, no ion channel or PXR off target activity, excellent kinase selectivity,¹⁷ and a PK profile suitable for oral dosing in several species.

Efficacy was measured using the LPS induced arthritic rodent model to gauge the ability of **23** to decrease high levels of TNF- α


Table 5 Pharmacokinetic profiles of 22 at

narmacokinetic	pronies	OI	22	and	23	

	Species	Cl (ml/min/kg)	AUC ($\mu M h$)	$T_{1/2}(h)$	F (%)
22	Rat ^a	3.1	25.6	1.8	100
	Dog ^b	0.49	49.3	30.4	45
	Monkey ^b	3.6	5.1	5.9	47
23	Rat ^a	2.4	21.7	1.4	68
	Dog ^b	0.88	58.6	12.0	66
	Monkey ^b	0.90	23.9	9.5	55

^a Iv 1 mg/kg, po 2 mg/kg, PEG-200/water 70:30 (v/v).

^b Iv 0.25 mg/kg, ethanol/PEG-200/water (10:40:50) (v/v/v) po 2 mg/kg, 0.5% methylcellulose + 0.02% SDS.

Scheme 3. Synthesis of 2,5 substituted A-ring 2H-quinolizin-2-one derivatives. Reagents: (a) NBS, benzoyl peroxide, CCl4, reflux, 75%.

Table 4	
---------	--

Biological activity of 2,5 substituted A-ring 2H-quinolizin-2-one derivatives

	p38α IC ₅₀ (nM)	THP-I/TNF- α^{12} IC ₅₀ (nM)	hWB/TNF- α ⁶ IC ₅₀ (nM)	PXR EC ₅₀ (nM)	$Ca^{2+} \ IC_{50}{}^a \ (\mu M)$	i Kr ^b K_i (μ M)
22	14.7	23.8	62.2	22.8	>30	>20
23	13.0	25.4	45.4	26.8	>30	>20

^a Inhibition of diltiazem binding.¹³

^b Inhibition of MK-499 binding to hERG in HEK293 cells.¹⁴

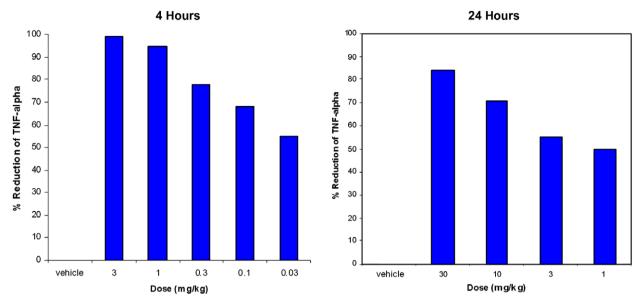


Figure 3. Reduction of TNF-α levels in rat LPS induced arthritic model at 4 and 24 h.

(Fig. 3). At the 4 h time point both 1 mg/kg and 3 mg/kg displayed >90% reduction of TNF- α levels, while 0.03 mg/kg still reduced THF- α levels by an average of 50%. The 24 h time point showed significant reduction in TNF- α levels at 30 and 10 mg/kg and moderate reduction at 1 and 3 mg/kg. Although the rat $t_{1/2}$ was 1.4 h, the excellent physical properties and potent functional activity of compound **23** allowed for excellent coverage in the 24 h LPS model.

In conclusion, we were able to successfully eliminate off target activity associated with piperazine **4** by removing the basic amine. Adjusting the core polarity to maintain functional potency led to the discovery of the novel 2*H*-quinolizin-2-one class of p38 α inhibitors. Initially this series was plagued with high PXR activity and long half life, but SAR optimization of **6** solved such issues while maintaining excellent potency. Moreover, **23** proved efficacious in the LPS induced arthritic rat model.

References and notes

- (a) Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nat. Rev. Drug Disc. 2003, 2, 736; (b) Saklatvala, J. Curr. Opin. Pharmacol. 2004, 4, 372.
- 2. Stoll, J. G.; Yasothan, U. Nat. Rev. Drug Disc. 2009, 8, 693.
- 3. Kobelt, G.; Eberhardt, K.; Geborek, P. Ann. Rheum. Dis. 2004, 63, 4.
- 4. Kumar, S.; Boehm, J.; Lee, J. C. Nat. Rev. Drug Disc. 2003, 2, 717.
- (a) Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.; Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLaughlin, M. M.; Siemens, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.; Adams, J. L.; Young, P. R. *Nature* **1994**, *372*, 739; (b) Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J. Science **1994**, *265*, 808.
- Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon, D. A.; Libby, B. E.; Ngyuen, K. T.; Pitzenberger, S. M.; Selnick, H. G.; Smith, G. R.; Tebben, A.; Vacca, J. P.; Varga, S. L.; Agarwal, L.; Dancheck, K.; Forsyth, A. J.; Fletcher, D. S.; Frantz, B.; Hanlon, W. A.; Harper, C. F.; Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.; O'Neil, E. A.; Orevillo, C. J.; Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Visco, D. M.; O'Keefe, S. J. J. Med. Chem. 1999, 42, 2180.

- 7. (a) Bemis, G. W.; Salituro, F. G.; Duffy, J. P.; Harrington, E. M. U.S. Patent 6147,080, 2000.; (b) Salituro, F.; Bemis, G.; Cochran, J. WO 99/64400.
- (a) Natarajan, R. S.; Doherty, J. B. Curr. Top. Med. Chem. 2005, 5, 987; (b) Herberich, B.; Cao, G.-Q.; Chakrabarti, P. P.; Falsey, J. R.; Pettus, L.; Rzasa, R. M.; Reed, A. B.; Reichelt, A.; Sham, K.; Thaman, M.; Wurz, R. P.; Xu, S.; Zhang, D.; Hsieh, F.; Lee, M. R.; Syed, R.; Li, V.; Grosfeld, D.; Plant, M. H.; Henkle, B.; Sherman, L.; Middleton, S.; Wong, L. M.; Tasker, A. S. J. Med. Chem. 2008, 51, 6271.
- Fitzgerald, C. E.; Patel, S. B.; Becker, J. W.; Cameron, P. M.; Zaller, D.; Pikounis, V. B.; O'Keefe, S. J.; Scapin, G. *Nat. Struct. Biol.* **2003**, *10*, 764.
 Natarajan, S. R.; Heller, S. T.; Nam, K.; Singh, S. B.; Scapin, G.; Patel, S.;
- Natarajan, S. R.; Heller, S. T.; Nam, K.; Singh, S. B.; Scapin, G.; Patel, S.; Thompson, J. E.; Fitzgerald, C. E.; O'Keefe, S. J. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5809.
- 11. A SPA-bead based assay was carried out using mouse p38. Compounds were serially diluted into a 96 well plate containing a MOPS based p38 assay buffer. The assay was initiated by addition of cold ATP, ³³P ATP (gamma) and biotin labeled GST-ATF2 substrate (4 μ M). After incubation at 30 °C for 3 h, the reaction was stopped by addition of a PBS based quench buffer with 2× moles of SPA beads over the amount of substrate used. The extent of phosphorylation of GST-ATF2 was measured using a topcount reader and subtracted from background. IC₅₀S are means of two experiments.
- 12. Anti human TNF- α was coated on immulon four plates. THP-1 cells (density = 2.5 × 10⁶/mL) were suspended into 96-well plates containing a PBS based medium. Compound was added as solution in DMSO followed by addition of LPS. The reaction was incubated for 4 h at 37 °C under CO₂. TNF- α release was measured in the supernatants by ELISA. Reported IC₅₀s are means from three measurements.
- 13. Ferry, D. R.; Glossman, H. FEBS Lett. 1982, 148, 331.
- Butcher, J. W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.; Karczewski, J.; Koblan, K. S.; Kostura, M. J.; Liverton, N. J.; Melillo, D. G. WO 0205860, 2002.
- Liu, L.; Stelmach, J. E.; Natarajan, S. R.; Chen, M. H.; Singh, S. B.; Schwartz, C. D.; Fitzgerald, C. E.; O'Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3979.
- Natarajan, S. R.; Chen, M.-H.; Heller, S. T.; Tynebor, R. M.; Crawford, E. M.; Minxiang, C.; Kaizheng, H.; Dong, J.; Hu, B.; Hao, W.; Chen, S.-H. *Tetrahedron Lett.* **2006**, 47, 5063.
- 17. Upstate Biotechnology Inc. Kinase counterscreen against 180 kinases with no activity below 10 μ M.