ANALYSIS OF THE CHEMILUMINESCENCE FROM ELECTRONICALLY EXCITED LEAD OXIDE GENERATED IN A FLOW TUBE REACTOR

E.A. DORKO, J.W. GLESSNER, C.M. RITCHEY, L.L. RUTGER, J.J. POW, L.D. BRASURE, J.P. DURAY and S.R. SNYDER

Department of Engineering Physics, Air Force Institute of Technology, Wright - Patterson AFB, OH 45433-6583, USA

Received 10 May 1985; in final form 10 October 1985

The chemiluminescence from electronically excited lead oxide formed during the reaction between lead vapor and either ${}^{3}\Sigma$ O₂ or ${}^{1}\Delta$ O₂ has been studied. The reactions were accomplished in a flow tube reactor. A microwave discharge was used to generate ${}^{1}\Delta$ O₂. The vibronic spectrum was analyzed and the band head assignments were used in a linear least-squares calculation to obtain the vibronic molecular constants for the X, a, b, A, B, C, C', D, and E electronic states of lead oxide. Based on these and other molecular constants, Franck-Condon factors were calculated for the transitions to the ground state and also for the A-a and D-a transitions. Evidence was presented to support a kinetic analysis of the mechanism leading to chemiluminescence under the experimental conditions encountered in the flow tube reactor. Mechanisms presented earlier were verified by the present data.

1. Introduction

The lead oxide molecule (PbO) has been extensively studied since the early 1900's. To observe the band spectra, early researchers used lead chloride gas flames or lead chloride carbon arcs. Subsequently, high-resolution absorption and emission studies identified at least six band systems, all of which terminated on the ground state [1,2].

More recently, using a molecular beam system, Oldenborg et al. [2] were able to perform emission spectroscopy and laser-induced fluorescence studies of the PbO system. By reacting atomic lead with O_3 under single collision conditions, they identified a series of 55 bands in the region 450-850 nm assigned to transitions from the a and b states. Their analysis showed that all bands were emissions to the ground state from excited electronic states. They postulated the following mechanism to be responsible for the population of the electronically excited a state of lead oxide (PbO*)

$$Pb(S) \xrightarrow{neat} Pb({}^{3}P_{0}),$$
 (1)

$$Pb(^{3}P_{0}) + O_{3} \rightarrow PbO^{*}(a) + O_{2}.$$
⁽²⁾

0301-0104/86/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

They studied the chemiluminescent intensity of this reaction as a function of oven temperature (T) under the single collision conditions of their molecular beam system. By plotting the logarithm of the intensity versus 1/T, they were able to find the activation energy. They concluded that (i) the chemiluminescence was first order in Pb, with no dependence on other components such as Pb₂, and that (ii) the reaction activation energy was small.

They also observed unusual variations in chemiluminescent intensities of the B-X transition with changes in oven temperature. They found that the intensity decreased with increasing oven temperature over certain temperature ranges. They attributed this phenomenon to a discharge near the oven which was exciting some Pb atoms to the metastable ${}^{3}P_{1}$ or ${}^{3}P_{2}$ levels presumably giving rise to metastable population densities greater than expected from a Boltzmann distribution. The reaction of these excited Pb atoms with O₃ produced the B-X chemiluminescent feature.

Kurylo et al. [3] also studied the reaction of lead and ozone. Their studies were accomplished in a flow tube reactor in which multiple collisions were possible. They observed emissions from the a, b, A, and B states. Using laser excitation of the O₃, they recorded a significant increase in A state emission intensity over the a, b, and B states. They have postulated two mechanisms for the enhancement. First, as a result of laser excitation of O_3 , the reaction with Pb(J = 1) produces PbO^* in the **B** state in higher vibrational energy levels. This energy is then collisionally transferred to another molecule which is excited to the A state. Another possibility is that the vibrational energy in the excited O₃ directly increases the rate of A state production at the expense of other reaction channels. Their observation of chemiluminescence over several feet in their flow system indicates that a slow reaction with Pb(J = 0) must compete favorably with a fast reaction with Pb(J = 1).

Linton and Broida [4] investigated the reactions of lead with N_2O , O, O_2 , and O_3 by studying the spectra of the chemiluminescence from electronically excited PbO generated in a flow tube system under a wide variety of conditions. They found that spectral intensities were very dependent on the oxidizer used and on the oxidizer pressure. They tabulated eight band systems between 250 and 800 nm and observed 22 new bands in the PbO system.

Brom and Beattie [5] used a flash-lamp-pumped tunable dye laser to study the a-X band system of PbO. They were able to obtain high-resolution spectra which allowed calculation of rotational constants. Observation of P, Q, and R rotational branches confirmed that Hund's case c is the angular momentum coupling scheme for the a state of PbO.

Wicke et al. [6] studied the velocity dependence of the Pb + N₂O \rightarrow PbO(B, v = 0) + N₂ chemiluminescence reaction under single collision conditions in an atomic beam. They were able to show that the chemiluminescence due to the B-X transition was a function of the translational energy of the reactant Pb atoms.

The most recent work with PbO was reported by Bachar and Rosenwaks [7]. While studying the reaction of Pb with ${}^{1}\Delta O_{2}$, they observed emissions from the a, b, A, B, C, C', and D states. Using microwave and chemical sources of ${}^{1}\Delta O_{2}$, they were able to compare the effects of ${}^{1}\Delta O_{2}$ concentration on the relative intensities of the various states. In going from 10% concentration to 30%, they noted a significant increase in intensity from all the states with the enhancement of the high energy D state about twice that of the other states.

They also studied the kinetic mechanism of the reaction by taking into account the concentration of excited species and exothermicity of possible reactions. Based on their results they concluded that, for the case of the Pb + ${}^{1}\Delta$ O₂ reaction, the main source of Pb(${}^{3}P_{1}$) was a reaction between O₂(${}^{1}\Delta$) and Pb(${}^{3}P_{0}$) [7].

In the present work, we report on the results obtained when lead vapor was reacted with either ground state molecular oxygen $({}^{3}\Sigma O_{2})$ or with the electronically excited state $({}^{1}\Delta O_{2})$ in a flow tube reactor. Some preliminary results have been reported on a portion of this work [8]. In the present account we report on the complete spectroscopic analysis of the vibronic transitions from the a, b, A, B, C, C', D, and E states to the ground state of PbO.

In section 2 the experimental and computational techniques are described. Section 3 contains the results of the vibronic band head assignments, molecular constants based on the assignments, and Franck-Condon factors for the transitions.

In section 4 the experimental evidence which has a bearing on determining the mechanisms responsible for the chemiluminescence is discussed. A comparison is made between the mechanisms for formation of PbO* during the reaction between Pb and ${}^{3}\Sigma$ O₂ and Pb and ${}^{1}\Delta$ O₂.

2. Experimental and computational procedures

2.1. Flow tube reactor

The experimental apparatus used to generate the chemiluminescent PbO flame was a flow tube reactor. The reactor has been described in detail previously [8]. For the reactions between Pb and ${}^{3}\Sigma$ O₂ a stainless-steel oxidizer manifold was used as described previously [8]. For the work with ${}^{1}\Delta$ O₂ the stainless-steel oxidizer manifold was replaced by one made of pyrex glass. Pyrex was used because of its very low quenching coefficient for ${}^{1}\Delta$ O₂ (10-5) [7]. The manifold consisted of a section of 14 mm i.d. pyrex tubing flared at one end. A series of six rows of four holes each were drilled in the tubing. The holes were 0.8 mm in diameter and were drilled with a diamond impregnated bit. The first row of holes was drilled in the flared edge at a 45 degree angle to the tube proper. The rows were spaced 3 mm apart, and each row was offset from the previous row by 45 degree to prevent stress fractures during drilling. Once the holes were drilled, a section of 28 mm o.d. tubing was placed over the smaller tubing, and the two sections were sealed together. This formed a double-walled cylinder with an open center. Finally, the pyrex stem was attached to the lower edge of the cylinder.

The manifold was mounted over the chimney. The stem of the pyrex manifold was secured to the flow tube via a 1/2 in. Cajon connector welded on a stainless-steel plate. The plate was attached to one of the side ports of the cross. Due to the fragility of the manifold, extreme care was taken when installing or removing the manifold.

Spectra were obtained as described previously [8]. Resolution of spectral lines with the experimental arrangement was determined to be 5 Å fwhm.

2.2. Generation of ${}^{1}\Delta O_{2}$

The ${}^{1}\Delta$ O₂ was generated using a 2450 MHz microwave discharge cavity. Pure O₂ was passed through a 13 mm quartz tube which was surrounded by a McCarroll-type microwave cavity (Opthos instruments) [9]. The cavity was cooled with an air stream directed into the cavity in order to stabilize the discharge. The quartz tube was connected by a means of pyrex tubing to the

Table 1 Activation energies for the formation of PbO *

oxidizer manifold. A yellow brown coating of HgO was deposited on the pyrex tubing downstream of the cavity to significantly reduce any atomic oxygen which may have formed in the discharge [10].

2.3. Emission intensity measurements

Intensities of emissions at selected wavelengths were observed under different pressure conditions as described previously [8]. The intensities were observed as a function of lead vapor temperatures. From these observations a rough estimate of the activation energies (E_a) for the formation of PbO* with both ${}^{3}\Sigma O_{2}$ and ${}^{1}\Delta O_{2}$ were obtained [2]. The results of these experiments are presented in table 1.

2.4. Determination of the presence and concentrations of electronic states of Pb

Previously [8] it had been shown that only a thermal mechanism was operating to produce lead vapor. An experimental determination of the number densities of thermally excited Pb was precluded due to a lack of necessary detection equipment. However, from a knowledge of the oven temperature and the energies of the states of Pb, the relative concentrations of the electronically excited states can be calculated using the Boltzmann equation. The energy levels or the first five states of Pb are shown in table 2. The relative number densities $N_{^{3}P_{1}}$ and $N_{^{3}P_{2}}$ were found to be 6.3×10^{-5} and 1.9×10^{-6} , respectively at a crucible temperature of 1163 K. The concentration of Pb in the flame region was shown to be $\approx 3.4 \times 10^{14}$ atoms/cc [8]. Assuming for the moment that

Wavelength observed (nm)	O ₂ pressure (Torr)	Ar pressure (Torr)	Pb vapor temperature (K)	Activation energy (E_a) (kcal/mol)
$\overline{Pb + {}^{3}\Sigma O_{2}}$		····		
670, 590. ⁸	0.3	1.9	1044-1086	63.9 + 8.0
590.8, 431.3	0.8	3.3	1062-1103	115.3 ± 22.4
$Pb + {}^{1}\Delta O_{2}$				
590.8, 431.3	0.7-1.3	0.9-1.0	809-1048	21.0 ± 6.1

Table 2 Energy levels of Pb [11]

State	Energy (cm^{-1})	
${}^{3}P_{0}$	0	
³ P ₁	7819	
${}^{3}P_{2}$	10650	
$^{1}D_{2}$	21 457	
${}^{1}S_{0}$	29 466	

all excited species created in the crucible reach the flame region, this would yield approximate concentrations of 2.1×10^{10} atoms/cc for Pb(${}^{3}P_{1}$) and 6.5×10^{8} atoms/cc for Pb(${}^{3}P_{2}$). Concentrations of Pb(${}^{1}D_{2}$) and Pb(${}^{1}S_{0}$) were negligible.

The relative ratios of the excited state population were calculated at the crucible temperature. To verify that this ratio remains constant into the flame region the following analysis was performed.

Transitions between the five lowest energy states of Pb are prohibited due to Laporte's rule which indicates that transitions between states of the same parity are forbidden [12,13]. Thus, the first four excited states of Pb are metastable.

The transition probabilities for transitions between the three lower states of Pb have been reported by Garstang [14] and are tabulated in table 3. A_m is the magnetic dipole transition probability and A_q is the electric quadrupole transition probability. Based on these values, the lifetime of the ³P₁ and ³P₂ states can be calculated from

$$\tau = 1/p, \tag{3}$$

where p is the probability of a transition. This yields a lifetime of 136 ms for the ${}^{3}P_{1}$ state. Since the probabilities are additive for a given state [14], the lifetime of the ${}^{3}P_{2}$ state is 4.8 s. For the current system, the Pb flow velocity was calculated to be

Table 3 Transition probabilities between excited states of Pb [14]

Transition	Туре	Probability (s ⁻¹)
$\overline{{}^{3}P_{2} - {}^{3}P_{1}}$	Am	0.18
	<i>A</i> _a	2.5×10^{-4}
${}^{3}P_{2} - {}^{3}P_{0}$	A_{a}^{q}	0.21
${}^{3}P_{1} - {}^{3}P_{0}$	$A_{\rm m}^{\rm q}$	7.30

8150 cm/s [8]. Since the chimney of the flow tube is 4 in. long, the residence time of the Pb in the chimney is ≈ 1.25 ms. Therefore, any ${}^{3}P_{1}$ and ${}^{3}P_{2}$ formed in the crucible will reach the flame region unless quenched by collisions with Ar molecules or the chimney walls.

The equation for the change in $Pb({}^{3}P_{1})$ concentration due to collisions with Ar can be written as

$$d[Pb(^{3}P_{1})]/dt = k'_{Ar}[Pb(^{3}P_{1})], \qquad (4)$$

where [] indicates concentration and k'_{Ar} is a first-order collision rate constant. The constant k'_{Ar} is defined in terms of a second-order rate constant, k, and the concentration of Ar as

$$k'_{\rm Ar} = k[{\rm Ar}]. \tag{5}$$

Hussain and Littler [15] reported a value for k of 0×10^{-16} cc/molecule s at 300 K with estimated error limits of $\pm 1.0 \times 10^{-16}$. The temperature extremes in the flow tube ranged from 300 to 1163 K and correspond to the greatest and least concentrations of Ar, respectively. Applying the ideal gas equation of state to both temperatures at an Ar pressure of 2 Torr yields the following Ar concentrations:

$$[Ar]_{300 \text{ K}} = 6.439 \times 10^{16} \text{ molecules/cc}, \qquad (6)$$

$$[Ar]_{1163K} = 1.656 \times 10^{16} \text{ molecules/cc.}$$
(7)

These concentrations were substituted into eq. (5) using the largest value for k (1×10^{-16}) and resulted in the following rate constants for de-excitation:

$$k'_{300\,\mathrm{K}} = 6.439\,\mathrm{s}^{-1},\tag{8}$$

$$k_{1163\,\mathrm{K}}' = 1.656\,\,\mathrm{s}^{-1}.\tag{9}$$

Upon taking the inverse of these rate constants, the following lifetimes are obtained:

$$\tau_{300 \text{ K}} = 155 \text{ ms},$$
 (10)

$$\tau_{1163\,\mathrm{K}} = 603\,\mathrm{ms.}$$
 (11)

A similar analysis for the ${}^{3}P_{2}$ state using k = (2.0)

 ± 0.5) $\times 10^{-15}$ cc/molecule s resulted in the following lifetimes

$$\tau_{300 \text{ K}} = 6 \text{ ms},$$
 (12)

$$\tau_{1163 \,\mathrm{K}} = 20 \,\mathrm{ms.}$$
 (13)

As seen from these results, even in the worst case, the lifetimes of the ${}^{3}P_{1}$ and ${}^{3}P_{2}$ states are at least four times greater than the chimney residence time of lead.

Since this analysis has neglected the effects of collisions with the chimney walls, these calculations represent an upper limit on the lifetimes. However, the effect of wall collisions is assumed to be negligible. Thus, any ${}^{3}P_{1}$ or ${}^{3}P_{2}$ created in the crucible will reach the flame region.

Bachar and Rosenwaks have previously observed the presence of atomic lead vapor in the ground and electronically excited states [7]. In the present work, evidence was gathered for the presence of atomic lead species in the flame region. The fluorescence of the lead/argon gas stream was observed. The excitation source was a lead iodide electrodeless lamp [16]. Excitation was provided by a microwave cavity operating at 2450 MHz. Emission from the Pb/Ar stream was observed at right angles to the incident light path. Under these conditions, two weak fluorescence lines were observed which are attributable to atomic lead – one at ≈ 4055 Å and another broad emission in the region of 3600 Å.

Wood and Andrew [17] have studied the emission from neutral lead in a lead halide electrodeless discharge tube. In their report they used the term symbols suggested in ref. [18] to identify the energy states for atomic lead which was assumed to obey *jj* coupling. They assigned the two most intense emission lines in the spectrum (with a ratio of intensities of 9:5) to the transition $6p7s(1/2, 1/2)_1 \rightarrow 6p^2(3/2, 1/2)_2$ at 4057.8067 Å and $6p7s(1/2, 1/2)_0 \rightarrow 6p^2(3/2, 1/2)_1$ at 3639.5677 Å, respectively. Assuming *LS* coupling, the transitions are designated as $6p7s(^3P_1) \rightarrow 6p^2(^3P_2)$ and $6p7s(^3P_0) \rightarrow 6p^2(^3P_1)$, respectively.

In the present study it is reasonable to assume that excitation of the $6p^2({}^{3}P_2)$ and $6p^2({}^{3}P_1)$ states of Pb in the flow tube occurred under the influence of these two emission lines from the PbI

lamp. The fluorescence observed was simply the reverse of the excitation process. This evidence indicates that the two lowest lying, electronically excited states of Pb did exist in the Pb/Ar gas stream in the flame region of the flow tube prior to any energy exchange due to collisions with oxidizer or product particles.

Wood and Andrew [17] report that a strong transition to the $6p^2({}^3P_0)$ state of Pb [i.e. $6p7s(1/2, 1/2)_1 \rightarrow 6p^2(1/2, 1/2)_0$] occurs at 2833.0534 Å with $\approx 11\%$ of the intensity of the most intense emission line. Under the conditions of our experiment this transition from the ${}^{3}P_{0}$ state could not be observed since a glass sleeve surrounding the PbI lamp absorbed radiation in the UV spectral region. However, if the excited states are present, then the ground state must also be present in the Pb/Ar gas stream under the experimental conditions. That is, since the lead was vaporized under exclusively thermolytic conditions, it is reasonable to assume that the number densities of the three electronic states are at least roughly estimated by a Boltzmann distribution which predicts a preponderance of the lowest energy state.

2.5. Computational procedures

Molecular constants were calculated by means of a global least-squares computer program, Program DUNAM [19], written by D.G. Shankland. The program was written in FORTRAN 77 to be used on a Harris 500 computer. Computation time for the analysis was typically a few seconds. The program uses as input the wavelength of the transition, the assignment, and a weighting factor (if desired). The program calculates molecular constants for all of the energy states involved in the vibronic transitions.

Franck-Condon factors were calculated from the molecular constants by use of program FCFACT written by J.J. Pow and L.D. Brasure [18]. The program FCFACT was written in FOR-TRAN 5 for use on a CDC Cyber computer. Values for the wavefunctions used in the calculations were obtained by use of program RIPA provided by C.R. Vidal of the Max-Planck Institute for Extraterrestrische Physik, FRG [21-23]. This program uses the semiclassical RKR approach to calculate an initial potential energy curve for a diatomic molecule [24–26] starting with molecular constants calculated from spectroscopic data. It then uses this calculated potential in a quantum-mechanical calculation developed initially by Hinze and Kosman [27] known as the inverted perturbation approach (IPA). This calculation refines the potential and produces numerical values for the wavefunctions. These values for the Franck–Condon factors for the vibronic transitions.

3. Results

3.1. Vibronic band head assignments and molecular constants

The chemiluminescence of PbO was observed during the reaction between Pb and ${}^{3}\Sigma$ O₂ and ${}^{1}\Delta$ O_2 . In both cases the emissions were sufficiently intense so that the spectral lines could be resolved. Spectra were observed from 300 to 900 nm. The vibrational band structure was observed in all spectra with the rotational structure being shaded toward the red. The rotational structure could not be resolved; however, band head assignments could be made with a good degree of certainty in many cases. The slit width for spectra of the Pb + ${}^{3}\Sigma$ O₂ reaction was 150 µm, and the slit width for spectra of the Pb + ${}^{1}\Delta O_{2}$ reaction was 15 μ m. A lowdispersion spectrum obtained during the reaction between Pb and ${}^{1}\!\Delta$ O₂ is shown in fig. 1. Band head assignments for the chemiluminescence spectrum from Pb + ${}^{3}\Sigma$ O₂ have been reported previously [8]. Analysis of the spectrum allowed identification of 63 vibronic bands assignable to transitions from the a, A, B, and C electronic states. Analysis of the spectrum from $Pb + {}^{1}\Delta O_{2}$ allowed identification of 271 vibronic bands assignable to transitions from the a, b, A, B, C, C', D, and E electronic states [19,28]. Based on these assignments the vibronic molecular constants for eight energy states of PbO have been calculated using program DUNHAM [19]. The constants are listed in table 4. For comparison, the molecular con-

Fig. 1. Chemiluminescence spectrum from the reaction between lead vapor and ${}^1\!\Delta$ O₂.

stants reported previously are listed in table 5. It is noted that there is a large variation in the reported values of the constants. The constants reported by Oldenborg et al. [2] for the X and a states appear to be the most reliable. Likewise the values reported by Linton and Broida [4] for the A state appear to be the most reliable. The constants calculated in the present work agree to within 1 or 2 standard deviations with those reported by Oldenborg et al. for the X and a states and within 2 or 3 standard deviations within those reported by Linton and Broida for the A state. Discrepancies between the sets of values for the constants may be due to the method used to weight the data during the calculations. Both previous reports [2,4] used a weighting technique in their least-squares

Table 4 Molecular constants for PbO in cm^{-1} . (Numbers in parentheses are two standard deviations)

Elec- tronic state	T _e	$\overline{\omega}_{e}$	$\overline{\omega}_{e} x_{e}$
x	0	722.69(0.96)	3.613(0.060)
a	16031.1(8.0)	483.4(3.0)	2.71(0.24)
b	16335.4(12.8)	433.5(10.6)	-0.04(1.80)
A	19876.2(6.6)	445.2(3.0)	0.78(0.30)
В	22303.6(8.0)	491.7(4.0)	0.98(0.42)
С	23794.6(11.2)	550.6(4.6)	5.46(0.38)
C′	24941.9(11.8)	500.1(4.2)	3.40(0.30)
D	30059.3(13.8)	617.7(10.0	9.56(1.60)
E	34443.0(22.4)	477.4(25.6)	13.0(5.2)

State	T _e	$\overline{\omega}_{e}$	$\overline{\omega}_e x_e$	Ref. (year)	
x	• • • • • • • • • • • • • • • • • • •	720.97(0.72) ^{a)}	3.536(0.050) ^{a)}	[4] (1976)	
	_	722.9(2.8) ^a	3.766(0.4) ^{a)}	[2] (1975)	
	_	721.26	3.53	[29] (1970)	
	_	721.6	3.70	[30] (1961)	
	_	722.3	3.73	[1] (1930)	
a	16024.9(2.9) ^{a)}	481.5(1.4) ^{a)}	2.45(0.14) ^{a)}	[4] (1976)	
	15912 ^{b)}	478.4 ^{b)}	2.5 ^b	[3] (1976)	
	16029(8) ^{a)}	478.7(1.9) ^{a)}	2.292(0.128) ^{a)}	[2] (1975)	
b	16315 ^{b)}	441.0 ^b	_	[3] (1976)	
	16379 ± 430		-	[2] (1975)	
Α	19862.6(3.0) ^{a)}	444.3(1.6) ^{a)}	0.54(0.24) ^{a)}	[4] (1976)	
	19721 ^{b)}	441.9 ^{b)}	0.20 ^{b)}	[3] (1976)	
	19862.3	444.2	0.46	[30] (1961)	
В	22166 ^{b)}	502.0 ^{b)}	3.8 ^{b)}	[3] (1976)	
	22289	489	_	[30] (1961)	
	22289.8	496.3	2.33	[1] (1930)	
С	23820	532	3.9	[29] (1970)	
C′	24947	494	3.0	[29] (1970)	
D	30194	530.4	2.9	[29] (1970)	
	30197.0	530.6	1.05	[1] (1930)	
Е	34455	454.1	6.95	[29] (1970)	

Tuble 5	
Previously reported molecular constants for PbO in cm	⁻¹ . (Numbers in parentheses are two standard deviations)

a) Calculated by a weighted least-squares technique.

Table 5

b) Calculated based on ground state constants of ref. [29].

calculations. In the present work no weighting was used. However, the agreement is still within acceptable error limits between the different values. For the states other than the X, a, and A state no statistical estimates of reliability have been placed on the values for the constants. The values presented in this work can be accepted as useful constants within the reliability limits placed on them. It is to be noted that these limits are rather large for the E state constants. The number of identified bands in the E-X transition was only seven. This limited data set has lead to a relatively large standard deviation for the E state constant.

3.2. Franck-Condon factors

Franck-Condon factors were calculated for transitions from each of the electronic excited states to the ground state. In addition, factors for the D-a and A-a transition have been calculated. The vibronic constants listed in table 4 were used for the calculations. Rotational constants and dissociation energies were obtained from the data listed by Huber and Herzberg [31].

In order to calculate Franck-Condon factors. the numerical values of the wavefunctions need to be known. Using program RIPA, the values of the wavefunctions for the vibrational levels of each electronic state were calculated for a total of 25 levels (beginning at v = 0) and evaluated at 301 points on each vibrational level. It was important to stay within the accurate portion of the potential energy curve when extending the number of levels calculated [32]. The pure reflection approximation begins to break down near the dissociation energy and special procedures need to be undertaken to maintain the desired level of accuracy in this region. For all states of PbO except the E state, level 24 is within the reliable region. The E state has the highest potential energy of the PbO excited states observed in emission and is very wide and shallow. The state is difficult to calculate and the maximum vibrational level accurately attainable is 15. Because of the overlap between the E and X states and because of the requirements of the program

FCFACT, a minimum of 351 points were required to give a valid calculation of the Franck-Condon factors for the transitions between these two states. The Franck-Condon factors for the a-X, A-X, B-X, and A-a transitions are shown in the appendix. Other values are available upon request [20].

Comparison of these Franck-Condon factors with a few that had been calculated previously and reported by Suchard [33] shows a good (though not exact) correspondence between the values. The lack of complete correspondence is due to the use of different molecular constants in the different sets of calculations.

4. Discussion of the mechanisms which lead to the observed chemiluminescence from the PbO*

4.1. Chemiluminescence during the reaction between lead and ${}^{3}\Sigma O_{2}$

A mechanism to account for the formation of PbO* during the reaction between Pb and ${}^{3}\Sigma O_{2}$ has been presented previously [8]. At higher pressure the following two-step mechanism:

$$Pb(g) + O_2(^{3}\Sigma) \rightarrow PbO(X) + O(^{3}P_2), \qquad (14a)$$

$$Pb(g) + O(^{3}P_{2}) + M \rightarrow PbO^{*} + M, \qquad (14b)$$

is postulated to account for the data. (Eq. (14b) may very well be a termolecular reaction involving an energy sink species, M.) At lower pressure, on the other hand, Pb flow rates are slower and there is time for the atomic lead to condense to molecular lead in the flame region of the flow tube. In this pressure regime the four-center mechanism

$$Pb_{2}(g) + O_{2}(^{3}\Sigma) \rightarrow Pb \cdots Pb \rightarrow PbO^{*} + PbO,$$

$$\vdots \qquad \vdots \\ O \cdots O$$
(15)

accounts for the data. The evidence presented in section 2 shows the presence of electronically excited species of Pb, that is the ${}^{3}P_{1}$ and ${}^{3}P_{2}$ states, in addition to the presence of the ${}^{3}P_{0}$ ground state. Since reaction (14a) is the slow or rate-controlling

step in the reaction between atomic lead and ${}^{3}\Sigma$ O_2 , this reaction pathway is expected to be slow compared to the pathway shown in (15) which has a much lower activation energy. However, if the concentration of Pb₂ is low compared to the concentration of atomic Pb then both reactions can occur at comparable rates. Evidence for the existense of Pb₂ under conditions similar to the present experiment has been presented by Johnson [34]. He observed and characterized the laser-induced fluorescence from a lead species carried in a stream of inert gas from a resistively heated alumina crucible through a fluorescence cell. The fluorescing species was identified as Pb₂. Since both Pb and Pb₂ are present under the experimental conditions in the flow tube, both mechanisms can occur. Slight variations in experimental conditions can lead to a change in the relative rates of formation of PbO* by the two mechanisms. Since the exothermicities of the two mechanisms are different, the relative amounts of the excited PbO* species which form should vary with experimental conditions. This variation in relative intensity with oxidizer pressure had been observed primarily during the reaction of lead with other oxidizers by Linton and Broida [4].

In the present work an analysis similar to that performed by Linton and Broida was performed. Five spectral determinations were made in the region 350-870 nm. In all five spectra the argon carrier gas pressure was kept constant at 2.1 Torr. The five oxidizer pressures were 0.04, 0.1, 0.2, 0.4, and 0.7 Torr. From these spectra it was apparent that as the O_2 pressure was increased from 0.04 to 0.2 Torr there was a gradual increase in the emission intensity from the a, A, and B states. At 0.4 Torr however, there was a dramatic increase in emission from the B and A states relative to the a state. Then, at 0.7 Torr, the strong enhancement of the B and A state had subsided and the spectra more closely resembled that observed at 0.1 and 0.2 Torr. Fig. 2 shows a plot of the log of the ratio of the emission intensity of different lines at 0.4 Torr to the intensity observed at 0.1 Torr versus energy above the ground state. Line enhancements in the a state are relatively small with enhancement factors of 1.1-1.2 and some lines are even inhibited. Enhancement factors for the A state are

Fig. 2. Plot of the log of the ratio of the intensity at 0.4 Torr oxidizer pressure to the intensity at 0.1 Torr versus energy of the emitted photon for the reaction between lead vapor and ${}^{3}\Sigma$ O₂.

between 1.6 and 2.2. The strongest enhancement occurs in emission from the B state. Here factors range from 1.87 to 2.7. The general trend of the data is similar to Linton and Broida's results observed in the Pb + O₃ reaction; $(6\% O_3 \text{ in } O_2)$ [4]. The pressures involved are also similar. This suggests that much of the emission observed by

Table 6 Intensity ratios for the a-X, A-X and B-X transitions ^{a)}

Transition	I_2/I_1	Transition	I_2/I_1
a(1,3)	6	A(0,1)	192
a(1,2)	5	A(2,1)	329
a(2,2)	15	A(1,0)	153
a(1,1)	8	A(3,1)	180
a(2,1)	7	A(2,0)	296
a(1,0)	8	A(3,0)	176
a(3,1)	17	A(4,0)	238
a(2,0)	28	B(0,3)	65
a(4,1)	33	B(0,2)	81
a(3,0)	16	B(1,2)	86
a(4,0)	27	B(0,1)	53
a(5,0)	37	B(1,1)	131
A(0,4)	135	B(1,0)	106
A(1,4)	67	B(2,0)	160
A(0,3)	116	B(3,0)	238
A(1,3)	36	B(4,0)	276
A(0,2)	70	B(5,0)	129
A(1,2)	173		

^{a)} I_1 is the intensity of the chemiluminescence observed during the reaction between lead and ${}^{3}\Sigma$ O₂; I_2 is the intensity observed during the reaction between lead and ${}^{1}\Delta$ O₂. Linton and Broida was actually due to the $Pb + O_2$ reaction. Also, the chemistry of the two reactions may be quite similar. Indeed, after the initial reaction with O_3 , the chemistry may proceed along the same lines.

A gradual increase or decrease in emission intensity from the excited states as pressure is varied is not unexpected. Indeed, the intensity should reach a maximum at a point corresponding to the most efficient mixing of O2 and lead vapor. However, this does not explain why some states are enhanced more than others. The explanation for this observation is that two (or more) mechanisms are operating to produce PbO*. While the reaction with atomic lead can produce PbO* in the E state this reaction is relatively slow compared to the reaction with Pb₂ which can produce PbO* only up to the A state with ground state Pb₂ or up as high as the B state with excited Pb₂. The relative rates at which the two mechanisms occur, account for the changes in the relative intensities.

4.2. Chemiluminescence during the reaction between lead and ${}^{l}\Delta O_{2}$

The low dispersion spectrum shown in fig. 1 obtained during the reaction between lead and $^{1}\Delta$ O_2 showed a gain ≈ 100 times greater than that obtained during a similar experiment with lead and ${}^{3}\Sigma$ O₂ [8]. The value of 100 was calculated from differences by factors of 10 in the slit width and in the carrier gas pressure (Pb flow rate). These spectra allow a qualitative comparison of the relative intensities of the different electronic systems. Taking into account the differences in gain, the Pb + $^{1}\Delta$ O₂ reaction obviously caused a considerable increase in the intensity of emissions from all of the excited states. However, the A and B state emission intensities were increased much more than the a state emission intensities. The ratios of intensities for several representative transitions are shown in table 6.

Based on these figures and after taking an average ratio for each state, the enhancement of the A state was calculated to be ≈ 10 times that for the a state. Similarly, the enhancement of the B state was ≈ 8.3 times that for the a state. These enhancements of the A and B states over the a

state offer additional evidence that it may be possible to populate an upper electronic energy state at the expense of a lower-lying energy state [4,7]. If this upper state population could achieve greater than 50% of the lower-lying energy state, a population inversion would be accomplished.

Total O₂ pressures were varied from 0.3 to 0.9 Torr at 0.5 Torr of Ar and from 1.0 to 1.4 Torr at 0.9 Torr of Ar. (No attempt was made to monitor changes in ${}^{1}\!\Delta O_2$ production with changes in total O_2 pressure.) A slight enhancement of the B state emission intensity over that of the a state was noted when the total O₂ pressure was increased from 0.3 to 0.7 Torr. However, this enhancement subsided at 0.8 Torr and was not observed at higher pressures. The major relative enhancements (i.e. factors of up to 2.7) of the A and B state emissions observed for the reaction of Pb + ${}^{3}\Sigma$ O₂ with increases in oxidizer pressures was not observed for the Pb + ${}^{1}\Delta$ O₂ reaction. The present results are consistent with the much more quantitative experiments of Bachar and Rosenwaks [7]. They did not observe significant increases in emission intensities from the A and B states relative to those from the a state with an increase in $^{1}\Delta$ O₂ pressure. They did observe increases in intensities from C and D state emission transitions relative to a state emission transitions by a factor of approximately two. These relative intensity increases were less than those observed when ${}^{3}\Sigma$ O₂ was the oxidizer.

The evidence presented above is generally consistent with the mechanism presented by Bachar and Rosenwaks [7] to account for the reaction between lead and ${}^{1}\Delta$ O₂. This mechanism is shown in the following reactions:

$$\operatorname{Pb}({}^{3}\operatorname{P}_{0}) + \operatorname{O}_{2}({}^{1}\Delta) \to \operatorname{Pb}({}^{3}\operatorname{P}_{1}) + \operatorname{O}_{2}({}^{3}\Sigma), \qquad (16a)$$

$$Pb({}^{3}P_{1}) + O_{2}({}^{1}\Delta) \rightarrow Pb({}^{3}P_{2}) + O_{2}({}^{3}\Sigma), \qquad (16b)$$

$$Pb(^{3}P_{2}) + O_{2}(^{1}\Delta) \rightarrow PbO(X, v) + O(^{3}P), \quad (16c)$$

$$PbO(X, v) + O_2(^{1}\Delta) \rightarrow PbO(a, b) + O_2(^{3}\Sigma),$$
(16d)

$$PbO(a, b) + O_2(^{1}\Delta) \rightarrow PbO(A, B...) + O_3(^{3}\Sigma).$$
(16e)

The significant increase in intensity when $^{1}\Delta O_{2}$ is the oxidizer indicates a significant change in mechanism to one in which the rate controlling step has a substantially lower activation energy. In the mechanism proposed by Bachar and Rosenwaks [7], the rate-controlling step in the sequence is the process shown in (16c), where PbO(X, v)indicates PbO in the vibrationally excited levels of the ground electronic state. This reaction is expected to have an activation energy much lower than that for the reactions shown in (14a) and (14b) or (15). The activation energy value for this reaction of 21.0 kcal/mol (see table 1) is substantially lower than those values obtained for the reaction with ${}^{3}\Sigma$ O₂. It was also observed that there is a slight decrease in activation energy with increasing crucible temperature. This decrease may indicate a change in mechanism for the reaction between Pb and ${}^{1}\!\Delta$ O₂ in which the vibrational level of PbO in (16c) is changing with changing temperature conditions in the reaction zone.

It can be pointed out that one additional step should be reasonably added to the Bachar-Rosenwaks mechanism. That step is the one involving the reaction between lead and the atomic oxygen formed as shown in (16c). This reaction is expected to be very fast and would not be evident in a kinetic analysis. However, based on the present work with ${}^{3}\Sigma$ O₂, it seems reasonable to include this reaction (14b) as a part of the mechanism. This step can at least partially account for the formation of the higher energy states since the reaction is exothermic enough to produce PbO* in the D and E states [4].

The observation that the change in relative intensities of chemiluminescence from different electronically excited states of PbO* with ${}^{1}\Delta$ O₂ pressure changes is less than the relative intensity changes where ${}^{3}\Sigma$ O₂ is the oxidizer provides further support for the modified Bachar-Rosenwaks mechanism. Since the rate-limiting reaction is fast it is relatively insensitive to whether Pb or Pb₂ is the reacting species. And since the energy transfer steps (16d) and (16e) are fast compared to (16c) then regardless of pressure the relative intensities of chemiluminescence will stay the same.

Based on the experimental evidence, there are significant differences in the mechanisms for the

		23	000	80	000	800	000	8	80	100	900	036	105	114	012	041	038	016	031	610	014	030	80	026	015	002	022
		22	8	800	000	000	8	8	800	003	022	082	127	039	017	059	001	047	003	032	016	800	030	003	012	024	003
		21	8	80	000	00	8	80	001	013	059	125	075	001	090	00	047	002	041	002	025	020	100	025	014	001	018
		20	8	000	000	000	8	001	007	038	108	107	005	052	025	029	018	032	003	035	005	013	027	002	010	023	001
		19	8	80	00	000	8	003	023	084	126	031	025	053	007	041	013	020	029	80	028	015	002	023	016	000	012
		18	8	80	000	000	100	012	058	125	1/0	003	068	001	051	000	039	011	013	031	002	015	025	004	900	022	013
		17	8	80	000	000	005	035	106	109	80	057	020	037	010	040	000	032	016	003	028	013	001	020	020	002	005
		16	8	000	000	002	018	078	128	035	026	052	011	037	021	011	036	001	020	026	001	013	025	007	001	017	020
		15	8	000	003	025	605	120	010	053	023	039	600	044	100	027	026	800	023	024	002	600	025	015	8	007	020
		14	8	001	010	090	130	054	017	090	800	039	023	600	039	005	013	032	800	<u>8</u>	025	020	002	005	020	020	900
		13	8	003	029	108	108	000	120	003	056	001	037	023	003	034	018	001	022	026	005	003	020	023	800	000	008
		12	990	010	067	136	034	038	6 40	032	015	046	001	027	031	100	017	031	010	001	019	026	010	000	800	021	021
		11	002	028	117	101	002	076	100	052	018	013	043	001	010	035	016	80	018	029	013	000	600	023	023	010	000
		10	900	065	1 4	024	056	021	053	001	046	021	004	036	025	800	016	032	017	800	600	025	025	010	80	005	017
		6	018	118	107	900	074	011	035	042	000	034	034	002	014	035	021	<u></u>	600	027	027	010	8	900	020	027	021
		∞	045	156	028	067	010	064	8	029	045	005	012	039	024	00	010	030	029	010	000	600	024	029	021	800	80
		2	092	139	004	076	023	020	057	600	012	045	027	100	013	035	030	600	000	012	029	032	020	900	000	900	020
ions		9	149	065	065	010	110	016	012	052	029	80	019	042	031	006	002	019	035	033	018	003	001	011	027	64 2	050
transit		s	195	003	260	024	016	064	029	8	030	049	027	002	900	029	041	032	013	001	<u>80</u>	019	037	050	055	051	043
X−a C		4	202	028	033	085	023	005	049	054	018	8	019	043	045	026	006	000	012	031	049	058	057	050	039	028	018
for Pb(3	160	114	005	033	610	048	<u>8</u>	010	4 4	057	8	014	8	007	028	049	061	063	056	045	033	022	013	008	004
actors 1		2	160	151	093	013	800	053	076	055	020	100	007	030	054	690	071	96	051	037	024	015	600	005	002	00	8
ndon fa		1	033	960	138	121	064	014	100	020	051	076	086	082	070	054	038	025	015	600	005	002	100	000	80	000	8
e 7 ck-Coi	<i>"</i> а	0	005	025	090	101	133	146	139	118	092	990	045	029	018	011	900	003	002	60	8	00	8	80	8	000	8
Tabl Fran	<i>`</i> ,		0		0	m	4	Ś	9	1	×	9	10	11	12	13	14	15	16	17	18	19	8	21	77	33	54

E.A. Dorko et al. / Chemiluminescence from lead oxide

359

Ł																											
		23	000	80	8	80	80	8	000	000	000	003	018	690	130	079	8	090	014	033	016	029	007	033	033	026	015
Į		22	000	80	80	80	8	8	8	8	002	012	054	120	660	003	049	030	019	031	016	018	026	003	003	005	012
		21	000	80	8	000	80	80	8	001	800	04 0	107	115	016	033	048	906	4 40	005	032	014	012	029	029	023	610
		20	8	80	8	000	000	8	800	005	028	680	125	037	015	062	000	049	80	641	003	026	610	003	003	600	906
		19	000	8	8	80	80	000	003	018	070	125	065	002	065	900	4 40	900	040	800	036	007	014	028	028	017	025
		18	80	8	8	8	8	001	011	051	117	093	001	056	023	028	022	028	600	036	8	028	018	002	002	016	8
		17	000	8	8	80	100	900	034	660	115	016	035	047	010	041	011	025	024	005	035	900	012	030	030	008	028
		16	8	000	000	000	003	020	076	124	946	012	065	8	052	800	641	800	020	029	800	027	021	800	800	026	8
		15	80	800	000	005	032	660	112	010	<u>046</u>	035	022	028	028	600	039	100	025	027	800	022	028	003	003	029	022
		14	8	8	002	017	072	125	4	016	063	002	051	007	031	025	<u>80</u>	038	010	007	034	015	00	024	024	600	001
		13	000	80	007	4 4	116	089	000	069	005	005	001	047	005	024	033	800	026	030	002	013	034	019	019	012	034
		12	000	002	021	088	123	016	946	036	029	022	039	002	643	013	600	039	013	003	031	030	004	005	005	037	020
		11	000	007	053	129	065	011	0 69	003	052	013	024	039	000	032	031	80	021	038	014	001	023	<u>6</u>	940	005	002
		10	100	022	101	119	003	070	010	057	80	050	014	013	4 40	010	008	039	026	001	015	040	036	011	011	016	042
		6	005	054	139	048	030	053	025	026	9 4 6	80	042	029	8	033	039	900	001	037	043	018	80	011	011	090	065
		8	015	104	122	80	082	8	062	012	024	649	8	021	048	017	100	031	048	026	002	007	035	061	190	090	043
		7	039	149	048	047	035	052	90	058	019	600	051	030	8	024	052	035	005	<u>8</u>	033	062	073	065	065	029	016
		9	082	148	8	060	005	051	044	001	049	4	002	019	054	043	600	003	031	064	078	070	051	032	032	008	00
		5	141	083	049	029	074	001	043	058	800	016	058	050	012	002	032	068	084	075	054	033	018	008	008	001	001
		4	197	600	108	011	<u>8</u>	074	011	015	064	056	012	003	036	075	060	079	056	033	017	008	003	00	001	8	8
		3	218	022	051	095	013	020	077	061	010	900	047	087	860	081	055	032	016	007	003	001	8	8	8	8	8
		2	179	127	8	9 46	102	058	003	017	070	106	105	080	051	028	013	906	002	001	80	000	80	8	8	80	8
		1	60	180	129	028	003	058	116	131	108	072	3	020	600	8	001	8	8	800	800	8	80	8	800	800	8
:		0	026	160	165	204	190	143	060	049	024	010	<u>8</u>	002	00	000	000	80	80	80	80	000	000	000	000	000	8
.	,a		0	1	Ч	e	4	Ś	9	2	ø	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54

Table 8 Franck-Condon factors for PbO A-X transitions E.A. Dorko et al. / Chemiluminescence from lead oxide

		33	8	õ	8	8	8	8	8	8	8	10)12) 63	143	180	ő,	773	10	351	315)14	1 41	30 8	202	131	324
		5	8	8	8	8	8	8	8	8	8	8	41 () ភ	18	5	200	80	56 (8	39 (54 (01 (30	31 (05 (33
		121	ð	ð	8	ð	8	8	8	ð	8	8	ð	Ξ		3	ò 	ð 	8	ð	8	8	8	8	8	8	8
		51	8	8	8	8	8	8	8	8	003	025	960	141	023	643	038	034	013	65	8	022	039	010	80	022	028
		50	8	8	8	8	8	8	8	10	014	068	142	964	012	690	00	6 77	025	800	<u></u>	020	00	022	030	013	80
		19	8	8	8	8	8	8	100	00	4	125	107	8	075	002	058	002	034	036	8	020	035	014	8	012	029
		18	8	8	80	8	8	§	003	026	860	135	018	051	030	041	007	050	600	012	₹	019	80	014	032	029	014
		17	80	8	00	8	00	00	014	068	139	059	016	990	011	038	033	002	041	029	100	014	034	026	007	8	800
		16	80	80	00	8	8	200	6 2	123	105	00	<i>LL</i> 0	100	059	005	029	043	8	012	036	024	003	003	019	033	035
		15	80	8	8	100	011	061	137	065	015	067	010	039	038	100	038	034	03	600	034	038	022	90	8	90	110
		4	8	8	8	20	333	115	115	10	11	20	29	80	028	8	80	60	37	38	013	8	<u></u>	18	028	30	127
		e B	8	8	0	15 (. 62	4	80	8	36	.	67	56	17 (02	39	35 (8	5	18 (35 (39	32 (51	1	02
		5	8	8	05 0	43 0	33 0	8	01 0	77 0	8	8 0	39 0	010	38 0	39 0	80	05 0	29	4	38	0 2	80	01 0	0 8	0	05 0
		 		ð	ð	ð	-	8	ð	ò	ð	ð	0	ð	8	0	ð	ð	8	ð	9	9	ð	8	ð	ð	ð
		11	8	00	018	60 5	140	800	075	808	067	8	031	049	808	00	037	647	029	808	8	83	010	016	018	018	016
		10	8	005	051	148	065	029	056	037	012	990	016	005	B	§	019	00	005	018	029	031	028	022	015	010	001
		6	8	019	109	136	8	089	0 0	059	036	0 0	043	647	013	10	018	037	643	035	024	013	80	002	80	8	80
		×	8	053	159	047	054	028	068	<u>10</u>	₹	054	011	8	033	051	<u>4</u>	026	010	80	8	00	003	005	80	80	906
		1	014	112	139	0 07	680	018	028	990	014	ĝ	6 5	057	035	010	8	002	60	014	017	017	015	013	011	60	001
ions		6	039	168	045	074	600	080	024	00	054	058	022	1 0	ğ	020	030	033	029	023	017	012	600	80	8	80	002
transit		5	8	166	003	80	<u>4</u>	002	8 4	059	012	007	026	8	648	039	026	015	80	ŝ	0 <u>1</u>	8	8	8	§	§	000
B-X		4	165	610	086	003	080	063	<u> 00</u> 2	014	052	<u>8</u>	65	026	600	00	80	001	0 2	8	005	<u> 0</u> 02	<u>80</u>	<u>80</u>	005	8	004
or PbO		3	235	100	112	690	8	037	620	067	031	80	8	<u> 8</u>	012	016	018	018	017	015	013	012	010	60	50	ŝ	005
tors fc		2	244	073	906	385	101	640	202	202) 19)35 (43	53)39)32 ()26	221	017 . (013 (110	500	202	900	05 (20	004
lon fac			09	96	8) 60	80	H5 (175 (84	176 () [9	3	133 (ຊ	17 (12 (5	s S	05 (2	03	3	02	3	0	01 (
Cond		1	49 1	26 1	76 0	78 0	50	11 0	76 0	8 0	30	18 0	11 0	01 0	2	3	8	01 0	010	0 10	010	0	0	8	8	0	0
able 9 ranck		0	0 0	1	2	3	4	5 1	۶ 0	0	0 8	0	0	o 	ð	ő	4 0	Š	ð	ð	ð	ð	ð	ð	ð	ð	۵ پ
нщ	5	1	-		-			-	-	-			ř,	-	-	, m	ř,	-	Ë,	-	Ē	-	ล	2	3	2	l h

E.A. Dorko et al. / Chemiluminescence from lead oxide

			_							-		_	~	_	-	_											
		23	8	8	8	8	000	8	8	8	8	8	8	8	80	8	00	002	008	019	037	053	055	043	005	084	164
		52	8	8	8	8	000	80	8	8	8	8	8	8	8	8	002	900	016	033	052	057	047	012	055	204	035
		21	8	80	8	8	80	8	8	8	8	8	80	8	8	00	005	014	030	050	059	051	020	031	230	800	215
		20	8	80	000	000	00	8	000	8	80	8	8	800	100	004	011	026	047	090	056	029	014	240	8	270	143
		19	8	000	8	00	000	8	8	8	000	80	8	001	003	600	023	<u>4</u>	061	090	037	003	234	014	314	125	051
		18	8	000	8	00	80	00	8	8	8	000	100	002	007	019	<u>6</u>	090	063	045	00	214	048	343	104	037	012
ļ		17	8	000	8	000	80	80	00	80	80	800	002	900	016	036	059	067	054	003	184	101	356	081	026	800	001
		16	8	800	000	000	000	000	000	000	000	001	004	013	032	057	070	061	010	148	166	353	061	018	005	000	000
		15	8	000	8	00	80	00	8	001	002	600	024	050	073	076	035	073	311	309	028	800	002	000	000	000	000
		14	8	000	000	000	80	8	80	002	007	020	045	073	082	051	642	382	274	017	005	001	800	80	8	8	000
		13	8	80	000	000	80	8	100	005	016	039	071	088	067	018	447	235	600	03	00	000	000	000	8	8	8
		12	8	8	. 80	8	8	100	03	012	033	368	- 033	385	8	201	194	2	02	8	ĝ	8	8	800	8	8	8
		Ξ	8	80	8	8	8	00	80	027)63 (260	103	8	542	155	23	01	8	8	8	8	8	8	8	8	8
		0	8	80	8	8	100	00	121	56 (660	57	10	67 (18	8	10	8	8	8	8	8	8	8	8	8	8
			8	8	8	8	03	15 (84	98	6	33]	26 (87 5	8	010	8	8	8	8	8	8	8	8	8	8	00
		6	8	8	8	22 0	10	38 0	40	57 0	1 1	57 0	51 5	8	8	00	0	0	0	0	0 8	0 0	00	0 8	0	0	0 Q
ļ		×	ð	ð	ð	8	0	8	ð		6	ŝ	ð	8	8	8	ð	ð	8	ð	8	8	ð	8	8	8	8
		2	8	8	6	ğ	029	086	171	125	541	8	8	8	8	8	8	8	8	8	8	8	8	8	8	80	8
		6	8	8	003	020	075	180	193	502	026	<u></u>	8	80	8	8	8	8	8	8	8	8	8	8	8	8	000
		5	000	00	012	090	182	277	451	016	001	8	8	000	8	80	8	8	8	8	8	80	000	000	8	8	000
		4	000	88	6 43	174	378	390	6 8	10	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	80	000
		3	002	026	154	493	320	8	80	8	8	80	80	80	8	8	8	8	8	8	8	8	8	8	8	8	000
		2	010	120	623	244	002	8	80	000	8	8	000	000	000	8	80	8	8	8	80	80	80	8	80	8	000
		1	070	765	164	8	8	8	8	8	800	8	8	000	000	80	8	8	8	8	8	80	00	000	80	8	000
1	a	0	918	082	80	80	000	80	80	8	80	8	8	8	8	8	00	80	80	000	00	8	80	8	000	80	000
	6		0	٦	7	÷	4	ŝ	6	2	×	6	10	11	12	13	14	15	16	17	18	19	50	21	53	23	24

;

A DESCRIPTION OF A DESC

ŝ

WWY. I ON:

10.4

Meter Instra

AND I REFLICE TO MAN.

Table 10 Franck-Condon factors for PbO A-a transitions

362

E.A. Dorko et al. / Chemiluminescence from lead oxide

formation of PbO. These differences are related to the electronic state of the oxidizer. The faster rate and greater intensity of emissions observed when $^{1}\Delta$ O₂ is the oxidizer indicate that the rate-controlling step (i.e. the step in which O-O bond must be broken) is much more probable if the oxygen and the Pb are in higher energy states. On the other hand, when ${}^{3}\Sigma O_{2}$ is the oxidizer, there are no fast preliminary reactions which can operate to prepare the system for the relatively fast rate-controlling step. Under these conditions it is reasonable to postulate that the formation of PbO* is due to one of two mechanisms. The first involves the formation of atomic oxygen in a very slow, endothermic, or possibly slightly exothermic, reaction followed by a fast reaction between Pb and the oxygen atom. The second mechanism involves the exothermic reaction between molecular oxygen and Pb₂ in a four-center-type reaction to produce one molecule of ground state PbO and one molecule of electronically excited PbO*.

Acknowledgement

This research was supported in part by a grant from the Air Force Office of Scientific Research under grant number AFOSR/AFIT 83-1. The authors would like to thank Mr. Curtis Atnipp for technical support given during the course of this project.

Appendix

A listing of selected Franck-Condon factors is given in tables 7-10. (Values in the tables are FC factor $\times 1000$.)

References

- [1] S. Bloomenthal, Phys. Rev. 35 (1930) 34.
- [2] R.C. Oldenborg, C.R. Dickson and R.N. Zare, J. Mol. Spectry. 58 (1975) 238.
- [3] M.J. Kurylo, W. Braun, S. Abramowitz and M. Krauss, J. Res. Nat. Bur. Std. 80A (1976) 167.
- [4] C. Linton and H.P. Broida, J. Mol. Spectry. 62 (1976) 396.
- [5] J.M. Brom Jr. and W.H. Beattie, J. Mol. Spectry. 81 (1980) 445.

- [6] B.G. Wicke, S.P. Tang and J.F. Friichtenicht, Chem. Phys. Letters 53 (1978) 304.
- [7] S. Bachar and S. Rosenwaks, Chem. Phys. Letters 96 (1983) 526.
- [8] E.A. Dorko, J.W. Glessner, C.M. Ritchey and S.R. Snyder, Chem. Phys Letters 109 (1984) 18.
- [9] B. McCarroll, Rev. Sci. Instr. 41 (1970) 219.
- [10] K. Furukawa and E.A. Ogryzlo, Chem. Phys. Letters 12 (1971) 370.
- [11] S.I. Steinfeld, Molecules and radiation (MIT Press, Cambridge, MA, 1978).
- [12] S. Mrozowski, Phys. Rev. 34 (1940) 1086.
- [13] E.U. Condon and G.H. Shortley, The theory of atomic spectra (Cambridge University Press London, 1963).
- [14] R.H. Garstang, J. Res. Nat. Bur. Std. 68A (1964) 61.
- [15] D. Husain and J.G.F. Littler, Intern. J. Chem. Kinetics 6 (1974) 61.
- [16] W.F. Meggers and F.O. Westfall, J. Res. Natl. Bur. Std. (1950) 447.
- [17] D.R. Wood and K.L. Andrew, J. Opt. Soc. Am. 58 (1968) 818.
- [18] C.E. Moore, Atomic energy levels, NBS Circular 467 (Natl. Bur. Std., Washington, 1949).
- [19] J.P. Duray, Spectroscopic Studies of Lead Oxide in a Flow Tube, M.S. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (December, 1984).
- [20] L.D. Brasure, Calculation of Franck-Condon Factors for Diatomic Molecules, M.S. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (March, 1985).
- [21] H. Scheingraber and C.R. Vidal, J. Mol. Spectry. 65 (1977) 46.
- [22] C.R. Vidal, J. Chem. Phys. 72 (1980) 1864.
- [23] W.C. Stawalley and C.R. Vidal, J. Chem. Phys. 77 (1982) 883.
- [24] R. Rydberg, Z. Physik 73 (1932) 376.
- [25] O. Klein, Z. Physik 76 (1932) 226.
- [26] A.L.G. Rees, Proc. Phys. Soc. (London) 59 (1947) 98.
- [27] J. Hinze and M.K. Kosman, J. Mol. Spectry. 56 (1975) 93.
- [28] C.M. Ritchey, Spectroscopy and Kinetics of Lead Oxide Chemiluminescence, M.S. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (December, 1983).
- [29] B. Rosen, Spectroscopic data relative to diatomic molecules (Pergamon Press, New York, 1970).
- [30] R.F. Barrow, J.L. Deutsch and D.H. Travis, Nature 191 (1961) 374.
- [31] K.P. Huber and G. Herzberg, Molecular spectra and molecular structure, Vol. 4. Constants of diatomic molecules (Van Nostrand-Reinhold, New York, 1979).
- [32] J. Tellinghuisen, J. Mol. Spectry. 103 (1984) 455.
- [33] S.N. Suchard, Spectroscopic data for heteronuclear diatomic molecules, Vol. 2 (Plenum Press, New York, 1975).
- [34] S.E. Johnson, Spectroscopy of Selected Diatomic Metal and Metal Oxide Molecules Using Laser Excited Fluorescence, PhD. Dissertation, University of California, Santa Barbara, California, USA (December, 1971).