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Abstract: Proline-based nitrone 2a has been synthesized. It readily
underwent [3+2] cycloadditions with a variety of alkene and alkyne
substrates to give isoxazolidines and isoxazolines, respectively,
with good to excellent regio- and diastereoselectivity.
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As part of an effort to build combinatorial libraries of var-
ious chemical classes, we have investigated potential scaf-
folds which would lead to molecules with at least two sites
for chemical modification. Nitrones represent attractive
scaffolds since they undergo [3+2] cycloaddition reac-
tions with a diverse range of alkenes and alkynes to afford
versatile isoxazolidine and isoxazoline-type products.1

These cycloadducts are useful intermediates for the cre-
ation of chemical libraries because they are readily modi-
fied by reduction,2 oxidative alkylation,3 and even
oxidation to other nitrones.4 Therefore the cycloadducts
represent a key branch point toward chemical diversity.
One appealing scaffold candidate is cyclic nitrone 2a,
closely related to known 2b (Scheme 1).5 The latter nitro-
ne has been synthesized several times but, to our know-
ledge, it has not been utilized in cycloaddition reactions.
Reaction of 2a with various substrates and subsequent re-
ductive cleavage of cycloadducts 3 would produce α-sub-
stituted proline derivatives. While cycloadditions of this
achiral nitrone to achiral substrates would afford racemic
mixtures, our initial efforts focused on this simpler system
with the expectation of a future chiral version. We report
here the synthesis of 2a and its cycloaddition reactions
with a range of substrates, supporting the use of nitrones
as building blocks for combinatorial libraries.6

Scheme 1

The benzyl ester of proline was chosen as the starting ma-
terial since it was commercially available and the benzyl
group provided a convenient handle during synthetic ma-
nipulations. Direct oxidation of proline benzyl ester 1a
was accomplished using a Na2WO4-catalyzed hydrogen
peroxide oxidation7 to give nitrone 2a in 30-40% yield as
a low melting solid. When a sample of 2a was heated un-
der nitrogen in d8-toluene for 2 days at 110 °C, no decom-
position was detected by 1H or 13C NMR.

With 2a in hand, we examined its cycloaddition reactions
with alkenes and alkynes (Table 1). Substrates for cy-
cloaddition included simple alkenes such as 1-hexene and
4-allylanisole, aryl substituted alkenes such as styrene,
and Michael acceptors such as ethyl crotonate. Alkyne
substrates included phenyl acetylene and methyl propi-
olate. In a typical procedure, the nitrone and 2-4 equiva-
lents of substrate were heated in toluene under nitrogen at
80-110 °C. Concentration of the reaction mixture fol-
lowed by flash chromatography afforded the purified
products.

Not surprisingly, reaction times varied considerably de-
pending on the substrate. In general, Michael-type sys-
tems such as methyl propiolate and ethyl crotonate reacted
fastest, with the cycloaddition essentially complete after
just 1-3 hours. Alkynes also reacted rather quickly, possi-
bly helped by both the minimal steric demands of the lin-
ear alkyne group and its increased reactivity.
Monosubstituted alkenes were considerably slower to un-
dergo cycloaddition, typically requiring 1 to 2 days at re-
flux in toluene to near completion. The most hindered
alkene, tetrahydropyran, gave only a 14% yield of the cy-
cloadduct even after 2 days at reflux. The product, of un-
determined stereochemistry, appeared to slowly revert to
starting materials in CDCl3 as determined by 1H NMR
analysis. Traces of acid in the solvent may have contribut-
ed to the cycloreversion.

The regioselectivity and diastereoselectivity of the cyclo-
additions was determined using NMR, including exten-
sive NOE and NOESY analysis of cycloadducts 3.8 The
cycloadditions exhibited very high regioselectivity af-
fording the products anticipated.8,9 Specifically, the nitro-
ne oxygen added to the end of the multiple bond at which
the substitutent either stabilizes formation of partial posi-
tive charge (e.g. alkyl, aromatic and alkoxy) or is less de-
stabilizing (e.g. away from the ester). Steric factors may
also contribute to the regioselectivity.
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The cycloadditions of nitrone 2a were essentially diaste-
reospecific. Ample precedent exists for diastereoselectiv-
ity in cycloadditions of other cyclic nitrones.10 These
reactions generally favor exo-mode addition consistent
with our observed diastereomer preference (Scheme 2).
However, certain cycloadditions are reversible and there-
fore the product distribution may reflect thermodynamic
rather than kinetic control.9,11 

Scheme 2

In conclusion, we have synthesized nitrone 2a and inves-
tigated its [3+2] cycloaddition reactions with alkenes and
alkynes. The nitrone reacted with a variety of substrates to
give a diverse set of cycloadducts. The cycloadditions
proceeded with excellent regioselectivity and diastereose-
lectivity. Since the cycloadducts are immediate precursors
to α-substituted proline derivatives, the methodology
should allow the synthesis of proline derivatives not readi-
ly accessible by other methods.12 Experiments are under-
way to develop a chiral version of the nitrone to address
the limitation of obtaining achiral products. The results of
this investigation will be reported in due course.

Figure
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