Electron-Transfer Reactions from Hydroquinone Dianions to 10-Methylacridinium Ion and a Cobalt(III) Porphyrin

Shunichi Fukuzumi* and Tomohiro Yorisue Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 (Received September 17, 1991)

Electron transfer from various hydroquinone dianions $(X-Q^{2-})$ to 10-methylacridinium ion $(AcrH^+)$ and $[Co(tpp)]^+$ $(H_2tpp=tetraphenylporphyrin)$ occurs efficiently in deaerated MeCN to yield 10,10'-dimethyl-9,9'-biacridine $[(AcrH)_2]$ and [Co(tpp)], respectively. The electron transfer results in the one-electron or two-electron oxidation of $X-Q^{2-}$, depending on the one-electron oxidation potentials of $X-Q^{2-}$ and $X-Q^{--}$.

The important role of quinones and hydroquinones in the electron-transport systems has stimulated many chemical and biochemical studies into their redox properties.1) Perchloric acid (HClO₄) is a stronger acid in an aprotic solvent (MeCN) than in H₂O and it has been reported to enhance the reactivities of quinones as electron acceptors.^{2,3)} On the other hand, hydroxide ion, being a stronger base in MeCN than in H₂O,^{4,5)} may enhance the reactivity of hydroquinones (X-QH₂) as electron donors. However, there has so far been no report on electron transfer from hydroquinones to oxidants in the presence of OH- in an aprotic solvent. In this study we have found that hydroquinone dianions (X-Q²⁻) which are strong reductants are formed by the deprotonation of X-QH₂ with OH⁻ in MeCN. Then, we report herein that electron transfer from X-Q²⁻ to 10methylacridinium ion (AcrH+) and [Co(tpp)]+ (H₂tpp=tetraphenylporphyrin) occurs efficiently, accompanied by the one-electron or two-electron oxidation of X-Q²⁻. The factors to control the occurrence of such electron transfer are examined based on the one-electron oxidation potentials of $X-Q^{2-}$ and $X-Q^{-}$.

Experimental

Hydroquinones used in this study were obtained commercially and purified by the standard methods. Cobalt(II) tetraphenylporphyrin ([Co(tpp)]) was prepared as reported in the literature.⁶⁾ The [Co(tpp)] was oxidized by dioxygen in the presence of HCl in methanol to obtain [Co(tpp)]Cl, which was purified by recrystallization from methanol.⁷⁾ The perchlorate salt ([Co(tpp)]ClO₄) was obtained by the metathesis of the chloride salt with AgClO₄ and recrystallized from toluene.⁸⁾ Tetramethylammonium hydroxide pentahydrate (NMe₄OH·5H₂O) was obtained from Sigma. A NMe₄+OH⁻ stock aqueous solution (0.10 mol dm⁻³) was used for the preparation of various concentrations of NMe₄+OH⁻ acetonitrile solutions. Reagent grade acetonitrile was purified by the successive distillation (four times) over P₂O₅.

Since some semiquinone radical anions were readily oxidized by dioxygen, the reactions were carried out under strictly deaerated conditions. A continuous flow of Ar gas was bubbled through the MeCN solution containing hydroquinone $(1.0 \times 10^{-4} \text{ mol dm}^{-3})$ in a square quartz cuvette for 10 min.

Then, the neck of the cuvette was sealed with a rubber septum and parafilm under Ar in order to ensure that air would not leak into the system. A microsvringe was used to inject 1—40 µL of a stock solution of NMe₄+OH⁻ (0.10 mol dm⁻³), which was also deaerated, into the cuvette, and the neck of the cuvette was resealed with parafilm. Electronic absorption spectra were recorded by using a Union SM-401 spectrophotometer with a quartz cell (1-mm or 1-cm i.d.), which was placed in a thermostated compartment at 298 K. The yields of semiquinone radical anions produced in the reactions were determined from the absorbance at λ_{max} of semiquinone radical anions.9-11) The conversion in the electron-transfer reactions with AcrH+ were determined by the decrease of the absorption due to AcrH⁺ in MeCN (λ_{max} =358 nm, $\varepsilon_{\text{max}} = 1.8 \times 10^4 \,\text{dm}^3 \,\text{mol}^{-1} \,\text{cm}^{-1}$). The formation of 10,10'dimethyl-9,9'-biacridine [(AcrH)₂] in CD₃CN was identified by comparing the ¹H NMR spectrum with that of an authentic sample. 12) The NMR measurements were carried out by using a JEOL JNM-GSX-400 spectrometer (400 MHz). The reduction of [Co(tpp)]+ to [Co(tpp)] was monitored by the decrease and increase of the absorption bands at 432 and 412 nm due to [Co(tpp)]⁺ and [Co(tpp)] in MeCN, respectively.¹³⁾ The rates of electron-transfer reactions were measured by using a Union RA-103 stopped-flow spectrophotometer.

One-electron redox potentials of quinones $(1.0\times10^{-3} \text{ mol dm}^{-3})$ were determined by cyclic voltammetry (CV). The CV measurements were performed on a Hokuto Denko model HA-301 potentiostat-galvanostat at 298 K in deaerated MeCN containing $0.10 \text{ M Bu}_4\text{N}^+\text{ClO}_4^-$ as a supporting electrolyte using a platinum microelectrode and a saturated calomel electrode (SCE) as a reference.

In order to confirm the formation of radicals, the electron spin resonance (ESR) measurements were carried out by using a JEOL JES-SM-1 rapid mixing flow apparatus and a capirally cell. A deaerated MeCN solution containing tetrachlorohydroquinone (1.0×10^{-4} mol dm⁻³) and NMe₄+OH⁻ (2.0×10^{-4} mol dm⁻³) was mixed with a deaerated solution containing AcrH⁺ (1.0×10^{-4} mol dm⁻³). The ESR spectra were recorded with a JEOL X-band spectrometer (JES-ME-1X). The g values and hyperfine splitting constants were calibrated by using an Mn²⁺ ESR marker.

Results and Discussion

Various hydroquinone derivatives (X-QH₂) are readily deprotonated in the presence of NMe₄+OH⁻ in MeCN.

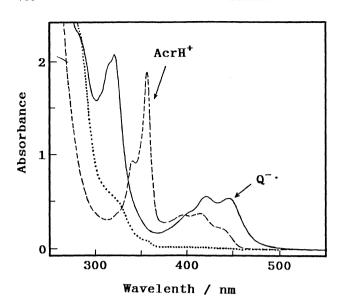


Fig. 1. Electronic spectra observed in the reaction of $AcrH^+$ (1.0×10⁻⁴ mol dm⁻³) with different concentrations of hydroquinone (QH₂) in the presence of $NMe_4^+OH^-$ ([$NMe_4^+OH^-$]=2[QH_2]) in deaerated MeCN; [QH_2]=0 (---), 5.0×10^{-5} (······), 1.0×10^{-4} mol dm⁻³ (—).

No hydroquinone monoanion (X-QH⁻) is formed when the OH⁻ concentration is smaller than the X-QH₂ concentration. The stoichiometry of the reaction of a hydroquinone derivative (X-QH₂) with OH⁻ is thus given by Eq. 1. The hydroquinone dianion (X-Q²⁻) thus formed in deaerated MeCN is a much stronger reductant than the parent hydroquinone (X-QH₂) as demonstrated below.

Hydroquinone dianion (Q²⁻), formed by the deprotonation of hydroquinone (QH₂) with OH⁻ in deaerated MeCN, can reduce AcrH⁺ to yield *p*-benzoquinone (Q) and 10,10'-dimethyl-9,9'-biacridine [(AcrH)₂] as shown in Fig. 1.¹⁴⁾ The formation of the dimer [(AcrH)₂] was confirmed by the ¹H NMR spectra.¹²⁾ It should be noted that no reduction of AcrH⁺ by Cl₄QH₂ has occurred in the absence of OH⁻. The stoichiometry of the reaction is given by Eq. 2 as demonstrated in Fig. 2a, where one Q²⁻ reacts with two

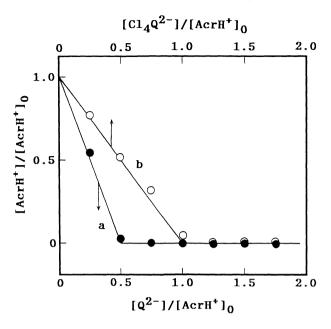


Fig. 2. Plots of the ratio of the AcrH⁺ concentration after the reduction by (a) Q²⁻ (●) and (b) Cl₄Q²⁻ (○) in deaerated MeCN to the initial concentration of AcrH⁺ (1.0×10⁻⁴ mol dm⁻³), [AcrH⁺]/[AcrH⁺]₀ vs. [Cl₄Q²⁻]/[AcrH⁺]₀ and [Q²⁻]/[AcrH⁺]₀, respectively.

AcrH⁺ to yield the two-electron oxidized product, Q. When the amount of Q^{2^-} is larger than the stoichiometric amount (more than one-half of AcrH⁺), however, the formation of semiquinone radical anion ($Q^{-\cdot}$) is observed as shown in Fig. 1. The formation of $Q^{-\cdot}$ was also confirmed by the ESR spectrum (see Experimental).¹¹⁾ No further increase in the absorbance of $Q^{-\cdot}$ (λ_{max} 422 nm) was observed by the addition of the excess amount of Q^{2^-} to AcrH⁺. The formation of $Q^{-\cdot}$ may be ascribed to the comproportionation reaction of Q^{2^-} and Q (Eq. 3).

$$Q^{2-} + Q \longrightarrow 2Q^{-} \tag{3}$$

In contrast with the case of Q^{2-} , only one-electron oxidation of tetrachlorohydroquinone dianion (Cl_4Q^{2-}) to Cl_4Q^{-} by $AcrH^+$ takes place as shown in Fig. 3, where the decrease in the absorbance due to $AcrH^+$ ($\lambda_{max}=358$ nm) is accompanied by the concomitant increase in the absorbance of the semiquinone radical anion Cl_4Q^{-} ($\lambda_{max}=318$ and 447 nm). The stoichiometry (Eq. 4) is confirmed as shown in Fig. 2b, where one Cl_4Q^{2-} reacts with one $AcrH^+$ to yield Cl_4Q^{-} and (1/2) ($AcrH_{)2}$.

$$Cl_4Q^{2-} + AcrH^+ \longrightarrow Cl_4Q^{-\cdot} + (1/2)(AcrH)_2$$
 (4)

When $AcrH^+$ is replaced by $[Co(tpp)]^+$, however, one $Cl_4Q^{2^-}$ can reduce two $[Co(tpp)]^+$ (Eq. 5) as shown in the spectral titration in Fig. 4a. When $Cl_4Q^{2^-}$ is replaced by 2,3-dicyanohydroquinone dianion ((CN)₂Q²⁻) which is a

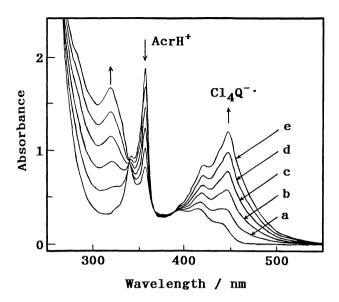


Fig. 3. Electronic spectra observed in the reaction of AcrH⁺ (1.1×10⁻⁴ mol dm⁻³) with different concentrations of tetrachlorohydroquinone (Cl₄QH₂) in the presence of NMe⁺OH⁻ ([NMe₄⁺OH⁻]=2[Cl₄QH₂]) in deaerated MeCN; [Cl₄QH₂]=(a) 1.8×10⁻⁵, (b) 3.6×10⁻⁵, (c) 5.4×10⁻⁵, (d) 7.2×10⁻⁵, (e) 9.0×10⁻⁵ mol dm⁻³.

$$Cl_4Q^{2-} + 2[Co(tpp)]^+ \longrightarrow Cl_4Q + 2[Co(tpp)]$$
 (5)

weaker oxidant than Cl_4Q^{2-} , $(CN)_2Q^{2-}$ can reduce only one $[Co(tpp)]^+$ (Eq. 6) as shown in Fig. 4b.

$$(CN)_2Q^{2-} + [Co(tpp)]^+ \longrightarrow (CN)_2Q^{-\cdot} + [Co(tpp)]$$
 (6)

In the case of $Cl_4Q^{2^-}$, the one-electron oxidized product, $Cl_4Q^{-\cdot}$ has no ability to reduce $AcrH^+$, but it can reduce $[Co(tpp)]^+$, resulting in the one-electron and two-electron oxidation of $Cl_4Q^{2^-}$ by $AcrH^+$ and $[Co(tpp)]^+$, respectively. In contrast, $Q^{-\cdot}$ can reduce $AcrH^+$, resulting in the two-electron oxidation of Q^{2^-} by $AcrH^+$ to yield Q and $(AcrH)_2$ (Eq. 2). In any case the rates of electron transfer were too fast to be determined by using

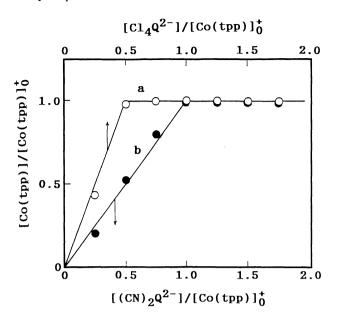


Fig. 4. Plots of the ratio of the [Co(tpp)] concentration formed in the reduction of [Co(tpp)]⁺ by (a) tetrachlorohydroquinone dianion (Cl₄Q²⁻, \bigcirc) and (b) 2,3-dicyanohydroquinone dianion ((CN)₂Q²⁻, \blacksquare) to the initial concentration of [Co(tpp)]⁺ (1.0×10⁻⁴ mol dm⁻³) in deaerated MeCN, [Co(tpp)]/[Co(tpp)]₀⁺ vs. [Cl₄Q²⁻]/[Co(tpp)]₀⁺ and [(CN)₂Q²⁻]/[Co(tpp)]₀⁺, respectively.

a conventional stopped-flow spectrophotometer.

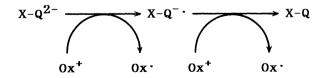
Various hydroquinone dianions $(X-Q^{2-})$ undergo either the two-electron oxidation (Eq. 2) or the one-electron oxidation (Eq. 4) by AcrH⁺ depending upon the substituent X, accompanied by the one-electron reduction of AcrH⁺. Whether the one-electron or two-electron oxidation of X-Q²⁻ takes place or not is solely determined by the Gibbs energy change of electron transfer from X-Q²⁻ to AcrH⁺ ($\Delta G_{\rm et}^{\rm o}/F$) and that from X-Q⁻ to AcrH⁺ ($\Delta G_{\rm et}^{\rm o}/F$) being negative or positive as shown in Table 1. The $\Delta G_{\rm et}^{\rm o}/F$ and $\Delta G_{\rm et}^{\rm o}/F$ values are obtained by Eqs. 7 and 8, where $E_{\rm ox}^{\rm o}$ and $E_{\rm ox}^{\rm o}$ are the one-

Table 1. One-Electron Reduction of AcrH⁺ by Hydroquinone Dianion Derivatives (X-Q²⁻), Accompanied by the One-Electron or Two-Electron Oxidation of Hydroquinone Dianion Derivatives, and the Gibbs Energy Change of the Electron Transfer from $X-Q^{2-}(\Delta G_{et}^{\circ}/F)$ and $X-Q^{-\cdot}(\Delta G_{et}^{\circ}/F)$ to AcrH⁺ in MeCN at 298 K

$X-QH_2$	Reduction by X-Q ^{2-a)}	$(\Delta G_{ m et}^{ m o}/F)/{ m V}^{ m b)}$	Reduction by X-Q a)	$(\Delta G_{ m et'}^{\circ}/F)/{ m V^{c)}}$
Tetramethylhydroquinone (Me ₄ QH ₂)	Yes	-1.02	Yes	-0.41
2,6-Dimethylhydroquinone (Me ₂ QH ₂)	Yes	-0.67	Yes	-0.15
Hydroquinone (QH ₂)	Yes	-0.71	Yes	-0.08
Chlorohydroquinone (ClQH ₂)	Yes	-0.54	Yes	0.09
Tetrachlorohydroquinone (Cl ₄ QH ₂)	Yes	-0.28	No	0.44
2,3-Dicyanohydroquinone ((CN) ₂ QH ₂)	No	0.43	No	0.71

a) Yes or no denotes whether the electron transfer takes place or not. b) Obtained by the relation, $\Delta G_{\rm et}^{\rm et}/F = E_{\rm ox}^{\rm e} - E_{\rm ed}^{\rm et}$, where the $E_{\rm ox}^{\rm e}$ values of X-Q²⁻ and the $E_{\rm red}^{\rm e}$ value of AcrH⁺ (-0.43 V) are taken from Refs. 15 and 16, respectively. c) Obtained by the relation, $\Delta G_{\rm et}^{\rm et}/F = E_{\rm ox}^{\rm e} - E_{\rm red}^{\rm e}$, where the $E_{\rm ox}^{\rm e}$ values of X-Q⁻ are taken from Ref. 15.

Table 2. One-Electron Reduction of [Co(tpp)]⁺ by Hydroquinone Dianion Derivatives (X-Q²⁻), Accompanied by the One-Electron or Two-Electron Oxidation of Hydroquinone Dianion Derivatives, and the Gibbs Energy Change of the Electron Transfer from X-Q²⁻ $(\Delta G_{\mathrm{et}}^{\circ}/F)$ and X-Q⁻⁻ $(\Delta G_{\mathrm{et}}^{\circ}/F)$ to [Co(tpp)]⁺ in MeCN at 298 K


X-QH ₂	Reduction by X-Q ^{2-a)}	$(\Delta G_{ m et}^{ m o}/F)/{ m V}^{ m b)}$	Reduction by X-Q a)	$(\Delta G_{ m et'}^{ m o}/F)/{ m V^{c)}}$
Me ₄ QH ₂	Yes	-1.80	Yes	-1.19
$MeQH_2$	Yes	-1.45	Yes	-0.93
OH_2	Yes	-1.49	Yes	-0.86
$\widehat{\text{ClQH}}_2$	Yes	-1.32	Yes	-0.53
Cl_4QH_2	Yes	-1.06	Yes	-0.34
$(CN)_2QH_2$	Yes	-0.35	No	-0.07

a) Yes or no denotes whether the electron transfer takes place or not. b) Obtained by the relation, $\Delta G_{\rm et}^{\rm o}/F = E_{\rm ox}^{\rm o} - E_{\rm red}^{\rm o}$, where the $E_{\rm ox}^{\rm o}$ values of X-Q²⁻ and the $E_{\rm red}^{\rm o}$ value of [Co(tpp)]⁺ are taken from Refs. 15 and 13, respectively. c) Obtained by the relation, $\Delta G_{\rm et}^{\rm o}/F = E_{\rm ox}^{\rm o} - E_{\rm red}^{\rm o}$, where the $E_{\rm ox}^{\rm o}$ values of X-Q⁻⁻ are taken from Ref. 15.

$$\Delta G_{\rm et}^{\circ}/F = E_{\rm ox}^{\circ} - E_{\rm red}^{\circ} \tag{7}$$

$$\Delta G_{\text{et}'}^{\circ} / F = E_{\text{ox}'}^{\circ} - E_{\text{red}}^{\circ}$$
 (8)

electron oxidation potentials of X-Q2- and X-Q-, respectively. 11-15) The one-electron reduction potential (E_{red}°) of AcrH⁺ has previously been reported as $-0.43 \text{ V vs. SCE.}^{16)}$ Although the $\Delta G_{\text{et}}^{\circ}/F$ value for ClQ⁻ is slightly positive (0.09 V), electron transfer from ClQ- to AcrH+ takes place (Table 1). This is because the electron transfer is followed by the C-C bond formation of AcrH· to yield the dimer $[(AcrH)_2]$. When the $\Delta G_{\rm et}^{\circ}/F$ value is largely positive (0.44 V in the case of Cl₄Q⁻⁻), however, no electron transfer from Cl₄Q⁻⁻ to AcrH⁺ occurs during the time scale (ca. 1 h at 298 K), since the back electron transfer from AcrH· to Cl₄Q may be much faster than the dimerization of AcrH. This is the reason why the reduction of Cl₄Q²⁻ by AcrH⁺ results in the formation of Cl₄Q⁻ (Eq. 4) in contrast with the other cases (Eq. 2). By the same token, X-Q²⁻ undergoes either the one-electron oxidation or twoelectron oxidation by [Co(tpp)]+ depending upon the substituent X, and signs of the $\Delta G_{\rm et}^{\circ}$ and $\Delta G_{\rm et}^{\circ}$ values being negative or positive determine whether one X-Q2can reduce one or two [Co(tpp)]+ or not as shown in Table 2. The one-electron oxidation or two-electron oxidation of X-O²⁻ by the oxidants (Ox⁺: AcrH⁺ and

$$\Delta \, G_{e\,t}^{O}$$
 < 0 Yes $\Delta \, G_{e\,t}^{O}$ < 0 Yes > 0 No

Scheme 1.

[Co(tpp)]⁺), determined by the difference in their oneelectron redox potentials is summarized in Scheme 1.

In conclusion, the strong basicity of OH⁻ in MeCN is demonstrated by the formation of hydroquinone dianions which can act as strong one-electron or two-electron donors towards AcrH⁺ and [Co(tpp)]⁺. Whether electron transfer from hydroquinone dianions and semiquinone radical anions to these oxidants takes place or not is mainly determined by the difference in the one-electron redox potentials of electron donors and acceptors.

The present work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- 1) G. Dryhurst, K. M. Kadish, F. Scheller, and R. Renneberg, "Biological Electrochemistry," Academic Press, New York (1982), Vol. 1, p. 1; F. L. Crane, "Biological Oxidations," ed by T. P. Singer, Wiley, New York (1968), p. 533
- 2) S. Fukuzumi, M. Ishikawa, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1989, 1811.
- 3) S. Fukuzumi, M. Ishikawa, and T. Tanaka, *Tetrahedron*, 42, 1021 (1986).
- 4) D. T. Sawyer and J. L. Roberts, Jr., Acc. Chem. Res., 21, 469 (1988).
- 5) S. Fukuzumi and T. Yorisue, *J. Am. Chem. Soc.*, **113**, 7764 (1991).
- 6) A. D. Adler, F. R. Longo, and V. Varadi, *Inorg. Synth.*, **16**, 213 (1976); A. Shirazi and H. M. Goff, *Inorg. Chem.*, **21**, 3420 (1982).
- 7) T. Sakurai, K. Yamamoto, H. Naito, and N. Nakamoto, Bull. Chem. Soc. Jpn., 49, 3042 (1976).
- 8) C. A. Reed, T. Mashiko, S. P. Bentley, M. E. Kastner, W. R. Scheidt, K. Spartalian, and G. Lang, *J. Am. Chem. Soc.*, **101**, 2948 (1979).
- 9) The λ_{max} and ε_{max} values of various semiquinone radical anions in the visible region have been reported; K. B. Patel and R. L. Willson, *J. Chem. Soc., Faraday Trans. 1*, **69**, 814 (1973).
- 10) The electronic spectra of stable semiquinone radical anions

derived from *p*-chloranil, *p*-bromanil, 2,3-dicyano-*p*-benzoquinone, and 2,3-dichloro-5,6-dicyano-*p*-benzoquinone have been reported; Y. Iida, *Bull. Chem. Soc. Jpn.*, **43**, 2772 (1970); **44**, 1777 (1971).

- 11) S. Fukuzumi, N. Nishizawa, and T. Tanaka, J. Org. Chem., 49, 3571 (1984).
- 12) S. Fukuzumi, T. Kitano, and K. Mochida, *J. Am. Chem. Soc.*, **112**, 3246 (1990).
- 13) S. Fukuzumi, S. Mochizuki, and T. Tanaka, *Inorg. Chem.*, 28, 2459 (1989).
- 14) The OH⁻ concentration was chosen as being equal or smaller than two-fold of the hydroquinone concentration in
- order to avoid the reaction of AcrH⁺ with OH⁻; S. Shinkai, T. Tsuno, and O. Manabe, *J. Chem. Soc., Perkin Trans. 2,* 1981, 661.

719

- 15) D. H. Evans, "Encyclopedia of Electrochemistry of the Elements, Organic Section," ed by A. J. Bard and H. Lund, Marcel Dekker, New York (1978), Chap. XII-1. The $E_{\rm ox}^{\rm o}$ value of $({\rm CN})_2{\rm Q}^{2-}$ is determined as 0.0 V (vs. SCE) from the cyclic voltammogram of $({\rm CN})_2{\rm Q}$ in MeCN containing Bu₄NClO₄ (0.10 mol dm⁻³) at 298 K (see Experimental).
- 16) S. Fukuzumi, Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., **109**, 305 (1987).