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Rapid cleavage of cyclic tertiary amides of Kemp’s triacid:
effects of ring structure

Michael L. Dougan,� Jonathan L. Chin,� Ken Solt§ and David E. Hansen*

Department of Chemistry, Amherst College, Amherst, MA 01002, USA

Received 21 May 2004; revised 9 June 2004; accepted 9 June 2004

Available online

Abstract—The piperidyl and prolyl amides of Kemp’s triacid (7 and 8, respectively) have been prepared and their rates of intra-
molecular acylolysis measured as a function of pD. The piperidyl derivative 7 reacts approximately four-times faster (e.g.,
t1=2 ¼ 3min at 20 �C and pD7.7) than the previously reported pyrrolidyl and methylphenethyl amide derivatives, while the prolyl
derivative 8 reacts two-times more slowly (e.g., t1=2 ¼ 30min at 20 �C and pD7.8). Molecular-mechanics calculations indicate that
the nonbonded interactions in the piperidyl derivative 7 are distinct from those in the prolyl, pyrrolidyl, and methylphenethyl amide
derivatives, a result that supports the suggestion that ground-state pseudoallylic strain contributes to the enormous reactivity of
Kemp’s triacid tertiary amides. In sum, the results reported indicate that the Kemp’s triacid scaffolding provides a general means
of activating tertiary amide derivatives.
� 2004 Elsevier Ltd. All rights reserved.
Figure 1. Reaction of pyrrolidyl amide derivatives of Kemp’s triacid.
In 1988, Menger and Ladika1 reported that the pyrrol-
idyl amide of Kemp’s triacid2 (1a, Fig. 1) undergoes
intramolecular acylolysis (k1) with a half-life of 8min at
pD7.05 and 21.5 �C. The anhydride formed (2a) then
opens (k2) to generate Kemp’s triacid itself (3a), and the
overall transformation is thus the hydrolysis of an
unactivated amide. pH-rate studies revealed that just
one of the carboxylic acid functionalities, in its conju-
gate acid form, participates in the reaction.

Menger and Ladika also determined that the pyrrolidyl
amide, methyl ester derivative 1b reacts with a half-life
comparable to that observed for 1a, confirming that
only one of the carboxylic acid functionalities in 1a is
necessary for rapid reaction. Remarkably, the amide
functionality in 1b cleaves rather than the ester, due
presumably to initial protonation of the more-basic
amide by the adjacent carboxylic acid.
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Under comparably mild conditions, an unactivated
peptide bond hydrolyzes with a half-life of approxi-
mately 500 years, in a reaction independent of buffer
catalysis and apparently involving direct attack of
water.3;4 In comparison to this rate, the cleavage of the
amide bond in 1a or 1b occurs 3million times faster,
due, concluded Menger and Ladika, to the ‘sustained
proximity’ of the amide and carboxylic acid function-
alities. They noted as well that ‘relief of internal com-
pression’ of these functionalities upon anhydride
formation also contributes to the rate acceleration, but
that this effect must be relatively small. In 1990, Menger
and Ladika5 showed that the pyrrolidyl amide monoacid
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Figure 5. The piperidyl (7) and prolyl (8) amides of Kemp’s triacid.

Figure 2. Pyrrolidyl amide monoacid derivative.

Figure 6. Synthesis of Kemp’s anhydride amide derivatives 10 and 11.
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derivative 4 (Fig. 2) reacts at essentially the same rate as
1a and 1b, an observation that conclusively established
that any reduction in activation barrier due to com-
pression must be less than the 3.7 kcal/mol cost of
placing two methyl groups in the 1,3-diaxial conforma-
tion (since, otherwise, the cyclohexane ring would sim-
ply undergo a chair flip).

In 1994, Curran et al.6 demonstrated that while the
methylphenethyl amide of Kemp’s triacid (5, Fig. 3)
undergoes intramolecular acylolysis at a rate almost
identical to that of the derivative 1a, the secondary
phenethyl amides 6a and 6b react 102–104 times more
slowly, depending on the pH. These workers proposed,
therefore, that an important factor in the enormous
reactivity of the tertiary amides is relief of ‘pseudoallylic
strain’7 (Fig. 4) upon nucleophilic attack of the amide
bond.

Regardless of the underlying reasons, tertiary amide
derivatives of Kemp’s triacid cleave extremely rapidly,
and we have been interested in exploiting this fact in the
development of catalysts for the hydrolysis of simple
amides. In particular, we hope to create ‘artificial’
enzymes for the hydrolysis of piperidyl and LL-prolyl
peptide derivatives. We thus wished to establish whether
the corresponding Kemp’s triacid derivatives 7 and 8
(Fig. 5) react with a rate similar to that of 1a and 5.

To measure these rates, we employed the approach
Menger and Ladika had described in their 1988 paper.
First, the corresponding Kemp’s anhydride amides 10
and 11 were synthesized from the anhydride acid chlo-
ride 9 2 (Fig. 6).8;9
Figure 3. Tertiary (5) and secondary (6a,b) amide derivatives.

Figure 4. Pseudoallylic strain in tertiary amide derivatives relative to

secondary. For the tertiary amide, a steric clash (one is shown

explicitly) is unavoidable.
The derivatives 7 and 8 were then generated from 10 and
11 by in situ hydrolysis of the anhydride functionality
(and for 11, also the benzyl ester protecting group) in
KOD, followed by acidification with DCl to the desired
pD.10;11 The cleavage reaction was then immediately
monitored at 20(�1) �C via 1H NMR.12 As a point of
reference, we also repeated the original work of Menger
and Ladika with pyrrolidyl amide 1a. The kinetic results
we obtained for the intramolecular acylolysis of deriv-
atives 1a, 7, and 8 are summarized in the pD-rate profile
shown in Figure 7.
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Figure 7. Plot of log k (s�1) versus pD at 20(�1) �C for the acylolysis of

the Kemp’s triacid amide derivatives 1a, 7, and 8. To convert pD to

pH, subtract 0.5.11 The measurement of accurate rates at lower pDs

proved impossible since the reactions were essentially over before the

first NMR spectrum could be recorded.
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Theoretical fits for the data in Figure 7 are not given,
since, as noted in the earlier reports,1;6 the rate depen-
dence on pD for cleavage of Kemp’s diacid amide
derivatives is not readily modeled.

In our hands, pyrrolidyl amide 1a shows the same
reactivity as previously reported.1 Across the pD range
studied, piperidyl amide 7 cleaves approximately four-
times more quickly than 1a, whereas prolyl amide 8
cleaves approximately two-times more slowly (to yield
the acid anhydride 2a and proline––thus the prolyl
carboxylic acid functionality does not directly partici-
pate in the reaction). At pD7.7, for example, piperidyl
amide 7 has a half-life of 3min; at pD7.8, prolyl amide 8
has half-life of 30min, and the half-life for pyrrolidyl
amide 1a is 13min. These results indicate that the
Kemp’s triacid scaffolding provides a general means of
activating tertiary amide derivatives.

We used molecular mechanics to explore whether, fol-
lowing the suggestion of Curran et al.,6 greater
pseudoallylic strain in piperidyl derivative 7might be the
reason for its enhanced reactivity relative to the previ-
ously reported tertiary amide derivatives 1a and 5. The
minimized structures13 of the three species are shown in
Figure 8. The nonbonded interactions in the pyrrolidyl
and methylphenethyl amide derivatives 1a and 5 are
remarkably similar, each having three almost identical
hydrogen–hydrogen close contacts. However, due to the
pseudo-chair conformation of the piperidyl ring, deriv-
ative 7 uniquely has two nonbonded interactions with a
hydrogen–hydrogen distance of only 2�A.

While it is not possible to quantify accurately the relief
of strain upon formation of the rate-determining tran-
sition state(s), the above modeling results do support the
notion that ground-state pseudoallylic strain contributes
to the enhanced reactivity of tertiary amide derivatives.
Since the nonbonded interactions in the minimized
structure of prolyl derivative 8 (not shown) are identical
to those in 1a, its slower rate of cleavage likely arises
from a perturbation of the carboxylic acid group di-
rectly participating in the reaction by the nearby prolyl
carboxylic acid functionality.
Figure 8. Pseudoallylic strain in energy-minimized conformations of

derivatives 1a, 5, and 7. The distances of all hydrogen–hydrogen close

contacts are shown. The structures are truncated to emphasize the

nonbonded interactions.
In summary, we have demonstrated that the Kemp’s
triacid piperidyl amide derivative 7 and prolyl amide
derivative 8 undergo intramolecular acylolysis at rates
comparable to that of the previously reported pyrrolidyl
and methylphenethyl amide derivatives 1a and 5.
Molecular mechanics calculations suggest that relief of
pseudoallylic strain in these tertiary amide derivatives
does contribute to the rapid rate of reaction.
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