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Herein we report the syntheses of 2,3-diaryl-substituted pyrrolo[3,2-b]pyridine-5-carbonitriles via a one-
pot 5-endo-dig-cyclization/protection reaction followed by palladium catalyzed arylation. In addition, a
complementary synthesis route employing Larock methodology is applied to efficiently explore further
aryl moieties in the 2-position. The novel compounds’ expedient c-Met receptor tyrosine kinase inhibi-
tion activity is discussed.

� 2009 Elsevier Ltd. All rights reserved.
The hepatocyte growth factor (HGF) receptor, also known as
mesenchymal–epithelial transition factor (c-Met), is a receptor
tyrosine kinase (RTK) present in both normal and malignant cells.1

The main biological effects upon its signaling pathway activation
comprise promotion of tissue regeneration, angiogenesis, and en-
hanced cell motility.2 c-Met is known to be over-expressed and
mutated in a variety of human cancer types.3 Thus, signal trans-
duction through the activation of the c-Met receptor is accountable
for proliferation, scattering, invasiveness and metastasis of tumor
cells. On this account, small molecule inhibitors, preventing recep-
tor autophosphorylation and recruitment of the downstream effec-
tors of c-Met, are of current interest.4

Currently, there are several ATP-competitive c-Met kinase inhib-
itors known, based on different scaffolds.5 Recent developments fea-
ture 7-azaindoles,6 aminopyridines6 and triazolopyridazines7 with
high potency and selectivity for c-Met.

As part of our studies towards aromatically substituted
azaindoles as kinase inhibitors, the rarely used core structure of
the 4-azaindoles in combination with diaryl substitution in the
2- and 3-position attracted our attention.8,9 At present, this struc-
ture is unknown as an inhibitor of c-Met and 5-cyano-2,3-diaryl-4-
azaindoles (1) in particular have not been previously described as
kinase inhibitors. By analogy to known compounds,8 these pyrrol-
opyridines are anticipated to offer kinase inhibiting potential.
ll rights reserved.

olman).
For the full syntheses of azaindoles a growing number of

approaches are known, heavily depending on the desired substitu-
tion pattern.10 Recently, Cacchi et al. transferred their highly versa-
tile methodology for the assembly of 2,3-diaryl-substituted
indoles11 onto 4- and 7-azaindoles.9 This methodology comprises
the reaction of 2-alkynyl-3-trifluoroacetamidopyridines with aryl-
bromides and -triflates in an aminopalladation-reductive elimina-
tion procedure. However, in our hands, this approach failed to yield
the desired 5-cyano-substituted azaindoles due to loss of the
trifluoroacetate protecting group under the reaction conditions.12

Therefore a strategy based upon base-induced cyclization of
o-aminoalkynylpyridines was employed (Scheme 1).

Silver(I)-assisted electrophilic aromatic iodination of commer-
cially available 5-aminopicolinonitrile 2 gave the mono-iodinated
intermediate 3 in 79% yield. The cyclization precursor 4a could
be obtained under Sonogashira-like alkynylation conditions in
moderate yield (66%).13

Azaindoles 5 were synthesized by subsequent base-induced
5-endo-dig cyclization in NMP,14 direct addition of N-iodosuccini-
mide and BOC-anhydride, leading to the protected 3-iodo-4-azain-
doles in good yields of 73–83% (see Ref. 15 for an exemplary
procedure). These compounds are stable if directly purified via
chromatography over neutral aluminum oxide and stored at
�20 �C.16 Arylation in the 3-position was achieved via Suzuki–
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Scheme 1. Reagents and conditions: (a) I2, Ag2SO4, EtOH, rt, 79%; (b) 4-ethynylpyridine, Cs2CO3, Pd(dppf)Cl2, THF, 50 �C, 66%; (c) 3-phenylpropiolic acid, Na2CO3, LiCl,
Pd(dppf)Cl2, DMF, 110 �C, 20%; (d) KOtBu, NMP, 90 �C, then NIS, DCM, 0 �C to RT, then (BOC)2O, DMAP, DCM, 0� to RT, 73–83%; (e) R1B(OR)2, K2CO3, Pd(dppf)Cl2, DME/H2O 2:1,
85 �C then TFA or ethan. HCl, 60 �C, 25–86%; (f) DHP, MgBr2, THF, 65 �C, quant.; (g) 11a or 11b, Na2CO3, LiCl, Pd(dppf)Cl2, DMF, 110 �C (h) IPy2BF4, TfOH, DCE, 83 �C, 48–66%
over two steps (i) R2B(OR)2, K2CO3, Pd(dppf)Cl2, DME/H2O 2:1, 85 �C, 9–77% (j) 13, Na2CO3, LiCl, Pd(dppf)Cl2, DMF, 110 �C then 1 N HCl, 110 �C, 39%.

Scheme 2. Reagents and conditions: (a) triethylsilylacetylene, Pd(PPh3)4, CuI,
Et2NH, 75%; (b) nBuLi, TESCl, THF, �78 �C to rt, 86%; (c) 4-ethynylpyridine-
hydrochloride, Pd(PPh3)4, CuI, Et2NH, 53%.

Scheme 3. Reagents and conditions: (a) NaH, BnCl, DMF, 0 �C to rt, 23%; (b)
Bis(pincolato)diboron, KOAc, Pd(dba)2, XPhos, dioxane, 110 �C, 95% -quant.
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Miyaura-coupling with various boronic acids or -esters. The
protecting group was quantitatively removed by subsequent acid-
ification of the reaction mixture with TFA or hydrochloric acid to
yield the desired 2,3-diaryl-substituted pyrrolo[3,2-b]pyridine-5-
carbonitriles 1a–e and 1g–p. The BOC-protecting group was indis-
pensable in this step, as unprotected 3-iodo-4-azaindoles failed to
undergo efficient Suzuki-type cross-coupling, showing dehalogen-
ation as major side reaction.17 Thus, employing two one-pot
routines we were able to prepare highly decorated 4-azaindoles
from quite simple starting materials.

An alternative approach was based upon Larock’s indole synthe-
sis. Via this route variable aryl substitution in the 2-position could
be efficiently explored. For the key cycloaddition step introduction
of an electron donating protecting group was indispensable.18

Therefore, iodo-aminopyridine 3 was reacted with dihydropyran
under Lewis-acid catalysis, yielding 6 quantitatively. The 4-azain-
doles 7 were prepared under Larock conditions with triethylsilyl-
protected alkynes 11 (vide infra).19 Thereby, traces of N-deprotec-
ted products were generated. This crude product mixture was trea-
ted with IPy2BF4 in the presence of an excess of triflic acid to
convert the TES-group to the corresponding iodides 8.20 The THP-
group was concurrently removed during this halogenation. Deriv-
atives 1q–y were achieved under standard Suzuki-coupling condi-
tions. It is noteworthy that this coupling works uneventfully
without N-protection on the indole. The 2,3-dipyridinyl-derivative
1f was yielded by Larock-reaction of 6 with symmetrically substi-
tuted ethyne 13 and subsequent acidic THP-group removal.

The alkynes 11a, 11b and 13, employed in the Larock reactions
with pyridine 6 were prepared according to known procedures
(Scheme 2).21

Iodobenzene 9 was converted to 11a via Sonogashira-coupling
with TES-ethyne, whereas 4-ethylnylpyridine and 4-iodopyridine
12 were coupled to ethyne 13, respectively. Ethynyl-benzene 10
was silylated with TES-chloride after deprotonation with n-BuLi,
to yield 11b.

Synthesis of the non-commercially available boronic acids 14a
and 14b employed in the final synthesis step for the derivatives
1u and 1v, respectively, were performed following a procedure
published by Buchwald et al. (Scheme 3).22

First, the structure activity relation of 4-azaindoles 1a–o with
different aryl-substituents in the 3-position is discussed, and their
c-Met-kinase inhibition activity is listed in Table 1. The phenyl-
derivative 1a shows an IC50-value of 2.09 lM, suggesting that
lipophilic moieties are preferred as substituents in the 3-position
of the 4-azaindole. The activity is maintained with the introduction
of a p-fluoro substitution (1b), but steadily decreases with increas-
ing size of the halogen (1a–d). Similarly, derivative 1e, bearing a
pseudohalogenic cyano substitution, is significantly less active.
The m-chloro-derivative 1g, exhibiting a 50-fold activity increase
compared to the phenyl derivative 1a, indicates that additional
halogen substituents are beneficial in this position. In case of the
m,m0-disubstituted derivatives (1i, 1j), the m-chloro, m0-fluoro-
derivative (1j) is about 7.5-fold more potent than 1i. But remark-
ably, when combining meta- and para-substitution (1k, 1l) the
chloro-substituent (1k) is about ninefold superior to the fluoro-
derivative (1l). However, the m-,p-dichloro-derivative 1h is



Table 2
c-Met inhibition activity of the 2-aryl-substituted 3-(4-fluorophenyl)-1H-pyrrolo[3,2-
b]pyridine-5-carbonitriles 1p–s

Compounds R2 IC50
a

1p nab

1q >10c

1r >10c

1s 0.33

a IC50 in lM.
b Inactive at 10 lM.
c Remaining activity >60% at 10 lM.

Table 1
c-Met inhibition activity of the 3-aryl-substitued 2-(pyridin-4-yl)-1H-pyrrolo[3,2-
b]pyridine-5-carbonitriles 1a–o

Compounds R1 IC50
a

1a 2.09

1b 1.95b

1c 10

1d >10c

1e >10c

1f nad

1g 0.04

1h >10c

1i 2.55

1j 0.34

1k 0.18

1l 1.59

1m >10c

1n nad

1o nad

a IC50 values represent average values from 2 to 4 measurements, and are defined
as the concentration (lM) resulting in 50% inhibition of activity, for assay condi-
tions see Ref. 23.

b Exemplary solubility data: (in water at pH 7.4): 1 lg/ml.
c Remaining activity >60% at 10 lM
d Inactive at 10 lM.

Table 3
c-Met inhibition activity of the 2-aryl-substituted 3-(3-chloro-4-fluorophenyl)-1H-
pyrrolo[3,2-b]pyridine-5-carbonitriles 1t–y

Compounds R2 IC50
a

1t >10b

1u 0.13

1v 5.57

1w >10b

1x >10b

1y >10b

a IC50 in lM.
b Remaining activity >60% at 10 lM.
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significantly less active. The compounds 1n and 1o, bearing an
amino-pyrimidinyl and a p-methylsulfonyl-phenyl substitution,
respectively, are inactive.
The potency of 1g became apparent when the optimization of
the 2-aryl-moiety with derivatives of 1b (see Table 2) and 1k
(see Table 3) was already ongoing.

Comparing the inactive phenyl-derivative 1p with the above-
mentioned pyridine-analog 1b the pyridine nitrogen is clearly
accountable for the lM activity. In case of an influencing
o-chloro-substituent (1q) the activity gain of the pyridine nitrogen
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is reduced. Derivative 1r, the pyridine-2-yl-isomer of 1b,24 cannot
sustain the activity, whereas introduction of a second meta-nitro-
gen (1s) obviously compensates this effect. Thus, 1s is about sixfold
more active than the pyridine-4-yl-analog 1b. In light of published
structures8 this effect is surprising. Obviously, this result cannot be
generally extrapolated, because the pyrimidinyl in position 2
together with a m-chloro,p-fluoro-phenyl-moiety in the 3-position
(1t, Table 3) reduces activity drastically, revealing subtle structure
activity relations.

Compounds 1u and 1v are based on 1k. Comparable derivatiza-
tion of the pyridine-moiety is known to be beneficial for similar
p38-kinase inhibitors.8 Introduction of a 2-aminopyridin-4-yl-moi-
ety in the 2-position of the azaindole has no effect on activity (1u)
evidencing that an o-amino-substituent is tolerated. Benzyl-substi-
tution in 1v, however, results in a 30-fold loss of activity compared
to 1k, showing that large lipophilic moieties are not tolerated in
this position.

The 2-aminopyridin-3-yl isomer 1x cannot maintain the activ-
ity (compared to 1u). This observation is consistent with the loss
of activity already noticed for the pyridine-3-yl-isomer 1r. Simi-
larly, the analogs 1w and 1y exhibit only weak inhibition activity.

Employing two different protocols based on identical starting
material various 2,3-diaryl-substituted 5-cyano-4-azaindoles
could be efficiently synthesized. The application of optimized pro-
tocols in one-pot procedures enabled a convenient synthesis of
highly decorated heterocycles. The compounds showed promising
inhibition activity of the c-Met RTK and led to the identification of
an inhibitor with an IC50 of 40 nM (1g).

Elucidation of the compounds’ selectivity profiles, particularly
discrimination of p38-kinases, is currently under investigation:
Preliminary screening of single compounds against a panel of 80
kinases revealed promising selectivities. Further studies compris-
ing improvement of activity and solubility enhancement are
currently ongoing in our group.
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