Pergamon

Bioorganic & Medicinal Chemistry Letters 10 (2000) 10851087

BIOORGANIC &
MEDICINAL
CHEMISTRY

LETTERS

Phosphonamidate and Phosphothioate Dipeptides as Potential
Inhibitors of VanX

Ke-Wu Yang, Jeffrey J. Brandt, Lisa L. Chatwood and Michael W. Crowder*
112 Hughes Hall, Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

Received 14 February 2000; accepted 10 March 2000

Abstract—In an effort to prepare novel inhibitors of VanX, N-[(1-aminoethyl)hydroxyphosphinyl]-D-alanine 1 and S-[(ami-
noethyl)hydroxyphosphinyl]-thiolacetic acid 2 were synthesized and evaluated as inhibitors of VanX. Phosphonamidate 1 was
shown to be a partial competitive inhibitor of VanX with a K; of 36+3 uM, and phosphothioate 2 was shown not to inhibit VanX.

© 2000 Elsevier Science Ltd. All rights reserved.

VanX is a Zn(II) metalloenzyme that is required for
high-level vancomycin resistance in bacteria. The intra-
cellular role of VanX is to hydrolyze vancomycin-bind-
ing D-Ala-D-Ala dipeptides that are used to synthesize
the normal bacterial peptidoglycan layer.! Vancomycin-
resistant bacteria have acquired the ability to produce
D-Ala-D-lactate depsipeptides which can be integrated
into the peptidoglycan layer; however, these depsipep-
tides bind vancomycin 103 weaker than their dipeptide
counterparts.”> Reynolds et al. reported that Enter-
ococcus faecium strains containing functional VanX
produced vancomycin-suspectible b-Ala-D-Ala contain-
ing precursors to vancomycin-resistant D-Ala-D-lactate
containing precursors in a ratio of 1:49.3 The removal of
VanX activity changes this ratio to 1:1. Clearly, VanX is
an excellent target for the generation of inhibitors,
which could be used in combination with vancomycin,
to combat vancomycin resistance.

Towards this goal, Walsh and co-workers have exam-
ined the inhibition properties of a number of phospho-
nate and phosphinate analogues of D-Ala-D-Ala as well
as of several dithiol compounds.!**> These analogues
were shown to inhibit VanX with K values ranging from
90 nM to 300 uM and exhibit competitive, mixed, and
slow-binding modes of inhibition. The subsequent crys-
tal structure® with bound D-Ala-D-Ala, a phosphonate
analogue, and a phosphinate analogue demonstrated
that VanX has a small, selective active site binding
pocket and that small changes in inhibitor structure can
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affect K; values by as much as 103, mirroring the exqui-
site selectivity of VanX for p-Ala-p-Ala over D-Ala-D-
lactate.

Previously, Bartlett and co-workers have synthesized a
number of phosphorus-containing peptide analogues as
inhibitors of hydrolytic enzymes,’!° including thermo-
lysin which is a Zn(II)-requiring peptidase. Several stu-
dies using thermolysin indicated that phosphonamidate
analogues of the peptides bound >800 times stronger
than the corresponding phosphonate analogue, due to
the fact that the phosphonamidate could form one
additional H-bond to the enzyme.!!-!2

To probe whether the phosphonamidate analogue of D-
Ala-D-Ala had a similar increase in binding affinity to
VanX, N-[(1-aminoethyl)hydroxyphosphinyl]-D-alanine 1
and O-[(1-aminoethyl)hydroxyphosphinyl]-D-lactic acid 3
were synthesized according to Scheme 1. Diphenyl 1-
(phenylmethoxycarbonylamino)ethyl phosphonate 7
was synthesized using triphenyl phosphite 5, benzyl
carbamate 6, and aldehyde 4 according to the method of
Oleksyszyn!® and converted by ester exchange in
methanol to the dimethyl ester 8. The monomethyl ester
9 was obtained by partial base-catalyzed hydrolysis of
dimethyl ester 8 and was subsequently converted by
treatment with thionyl chloride in dichloromethane to
chlorophosphonate 10. This strategy revealed the key
intermediate chlorophosphonate 10 could be coupled
with D-lactic acid methyl ester or D-alanine methyl ester
and converted using previously published proce-
dures®!%14 to afford the phosphonate 3 and phosphon-
amidate 1. Similar synthetic Schemes are thoroughly
precedented in the literature.”~!%!% At pH values >7.0,

0960-894X/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

PII: S0960-894X(00)00186-4



1086 K.-W. Yang et al. | Bioorg. Med. Chem. Lett. 10 (2000) 1085-1087

O G CHj O CH;
CH3CHO + P(OCgHs)3 + O)J\NH a O)J\N)\P/OQ)HS b /U\ ,OCHj
: 2 — H 4 0CHs o N M~
fo} 6815 H O OCH3
4 5 6 7 8
O CH
O CHy 3
cl
. A0 o N
p
“> @A H ¢ ~ocH; H g "OCH;
10
9
j\ oy €oocC CH3 " u
_N H -
R o N 3 coz g HZN/]\P’N €0,
/\ _— \
— 00 CH; O/o CH3 00 CHy
n 1
O  CHj JC\H3 CHj
. _S$._CO
h O)J\N)\P S._-COOCH; i ,P\ S €O ] N R ~CO2
% —
- H o d'h Oo 00
\
13 CH 2
_0._COOCH; 1 p/ 2 m _0._COy
) N — @ &o Ly — Oy
0Q CH; 3 O CH;
CH3
15

Scheme 1. Reagents and conditions: (a) AcOH, rt-85°C, 3 h (60%); (b) CH;0Na, MeOH, NaOH, rt, 2 h (72%); (c) MeOH, NaOH, concentrated HCI,
rt, 12 h (86%); (d) CH,Cl,, SOCl,, rt, 4 h; (e) CHCI, triethylamine, p-alanine methyl ester hydrochloride, rt, 10 days (46%); (f) CH;CN, LiOH, TBK,
MeOH, rt, 14 h; (g) 5% Pd/C, H,O, H,, rt, 2 h; (h) CHCls, triethylamine, methyl thioglycolate, rt, 10 days (23%); (i) HMPA, n-C3H,SLi, CHCl;, TBK,
MeOH, rt, 2 h (60%); (j) MeOH, 5% Pd/C, Hy, rt, 2h (69%); (k) CH,Cl,, triethylamine, b-lactic acid methyl ester, | N HCI, 5% NaHCOs, rt, 5 days
(53%); (1) hexamethylphosphoramide (HMPA), n-C5;H,SLi, CHCl;, triethylammonium bicarbonate (TBK), rt, 3 h (60%); (m) 5% Pd/C, MeOH, H,, rt, 3

phosphonamidate 1 is stable for over a week at 4 °C, in
agreement with previous studies by Bartlett '©

To assess the inhibition properties of these compounds,
steady-state kinetic studies were conducted using recom-
binant VanX and the continuous assay for VanX activity
recently reported by our lab.!> In excellent agreement
with Walsh and co-workers,! the phosphonate 3 is a
competitive inhibitor of VanX with a K; of 400 4+ 8 uM at
pH 7.0. The phosphonamidate 1 yielded Lineweaver—
Burk plots (Fig. 1) indicating competitive inhibition;
however, slope replots of the inhibition data were hyper-
bolic suggesting a partial competitive mode of inhibition
for the inhibitor (Fig. 2).'® By using a method described
by Webb, a K; value of 36 + 3 pM was calculated for 1,
which is a factor of 10 lower than the K value for
phosphonate 3.

Previously, Walsh and co-workers reported that p-3-[(1-
aminoethyl)-phosphinyl]-2-methylpropionic acid (APMP)
binds as a mixed noncompetitive inhibitor of VanX with
a Kj, of 0.32 pM.! Subsequently, Bussiere et al. demon-
strated that the weaker binding of the phosphonate 3, as
compared to APMP, to VanX is because the amino ter-
minus of the phosphonate is rotated about the P-C bond
and does not make the same binding contacts as D-Ala-
D-Ala or APMP. On the other hand, the amino terminus
of the phosphinate analogue forms several strong H-
bonds with active site residues, explaining its tighter
binding to VanX. It is not clear why phosphonate 1
rotates about the P-C bond and assumes a higher
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Figure 1. Double-reciprocal plot of VanX inhibition by phosphon-
amidate 1.

energy conformation when bound to VanX. It is also
not clear why APMP exhibits mixed noncompetitive
inhibition! since APMP binds in a similar way as D-Ala-
D-Ala and no other binding sites remote from the active
site. were found for APMP.® Nonetheless, phosphon-
amidate 1 apparently binds to VanX in a manner similar
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Figure 2. Slope and intercept replots of VanX inhibition by phospho-
namidate 1.

to the phosphonate 3, and the increased binding affinity
of the phosphonamidate is most likely due to the addi-
tional H-bond from the N-H of 1 to the enzyme. The
crystal structure of VanX demonstrated that the com-
parable N-H in substrate D-Ala-p-Ala is hydrogen
bonded to the backbone carbonyl of Tyr109.°

To extend the synthetic route in Scheme 1 to generate
additional potential inhibitors of VanX, chlorophos-
phonate 10 was coupled with methyl mercaptoacetate
and deprotected using standard procedures®!%14 to yield
the phosphothioate 2. This compound was shown to be
stable for over a week at 4°C and at pH 7.0. Kinetic
studies demonstrated that the phosphothioate 2 did not
inhibit VanX at concentrations of 2 up to 1 mM, sug-
gesting an important role of the methyl group in sub-
strate/inhibitor binding. This result is in contrast to the
crystallographic studies that showed minimal contacts
between VanX and the C-terminal methyl on D-Ala-D-
Ala, phosphonate 3, and APMP.® We cannot rule out
the possibility that the replacement of the methylene in
APMP, the amine in 1, and the oxygen in 3 with sulfur
explains the loss of inhibitory behavior by 2. Attempts
to synthesize a phosphothioate analogue containing a
C-terminal methyl substituent were unsuccessful.

The phosphorus-containing dipeptide analogues 1, 2
and 3 were also tested as inhibitors of metallo-B-lacta-
mase L1 from Stenotrophomonas maltophilia because
these compounds have a similar structure as a part of
the putative tetrahedral intermediate formed during B-
lactam bond hydrolysis (Fig. 3). However, none of the
analogues inhibited L1 at concentrations up to 1 mM at
pH 7.0 using nitrocefin as the substrate.!”

The extremely narrow and selective active site of VanX
presents a major obstacle in designing small molecule
inhibitors. The results on phosphonamidate 1 suggest
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Figure 3. (A) Proposed structure of tetrahedral intermediate of
cephalosporin hydrolysis by metallo-p-lactamase L1. (B) structure of
phosphonamidate 1.

that the positioning of a hydrogen in an inhibitor to
form a hydrogen bond to the enzyme can result in a 10-
fold increase in binding affinity. The ability to control
the rotation about the P-C bond in 1 will likely result in
further increases in binding affinity and potentially in a
clinically-useful inhibitor.
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