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Alay(PO,R-CH)Pro as potential inhibitors of the human
cyclophilin hCyp-18
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Abstract—Pseudopeptides containing the phosphinic analogue of the alanyl-proline motif Alay(PO,R-CH)Pro, were synthesized
via three- (R =H) and four-step (R =CH,;) procedures. The mixtures of diastercomers were evaluated as inhibitors of the human
cyclophilin hCyp-18, an important peptidyl-prolyl isomerase. © 2001 Elsevier Science Ltd. All rights reserved.
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In the past decade, an impressive number of novel : o R ' o}
pseudopeptides has been developed as enzyme (k¢ j)\
inhibitors, in particular protease inhibitors. Some of NH NH

them have been used as novel therapeutic agents.!
Among other mimetics, phosphinic pseudopeptides are
potent inhibitors of aspartyl proteases’ and zinc-
metalloproteases®® such as angiotensin-converting
enzyme (ACE)* or matrix metalloproteases (MMPs).
For this purpose, many different phosphinic motifs
have been designed and synthesized. We investigated
the synthesis of pseudopeptides 1 and 2 containing,
respectively, a charged and a non-charged Ala-Pro
phosphinic isostere, in order to test them as potential
inhibitors of the human cyclophilin hCyp-18. HCyp-18
is an important peptidyl-prolyl cis—trans isomerase
(PPlase) implicated in protein folding,® cellular H
multiplication’ and communication,® as well as | H
immunosuppression.” Moreover, hCypl8 is involved in S H'NYN\g s

! Al

the infection of T-cells by HIV-1 and in the multiplica- © .
tion of the virus.'” The design of transition-state mimics HoN 19°
of the PPIase activity might lead to the development of N__©
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Though the mechanism of the reaction is not clearly hydrophobic
established, recent results suggest an hyperpolarization pocket

of the amide, a quaternarization of the nitrogen'
(Scheme 1, A) and an enzyme-assisted rotation of the
Scheme 1. Amino acyl-proline cis—trans isomerization: pro-
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‘keto-amine’ intermediate'® (Scheme 1, A’). The phos-
phinic motif displays some similarities with the postulated
PPlase transition state (Scheme 1, B and B’). We report
herein the synthesis of an Ala-Pro phosphinic isostere
which might be able to mimic the catalytic intermediates
of the reaction. This motif was inserted inside a tripeptide
Ac-Ala-Pro-Phe-pCMA'* derived from the standard
model substrates of hCyp-18 Suc-Ala-Ala-Pro-Phe-p NA.

2. Synthesis of phosphinic alanyl-proline surrogates

A general method of preparation of aminoalkyl phos-
phinic dipeptides equivalents has been previously
reported. It implies a conjugate addition of the trivalent
form of a protected aminoalkylphophinic acid on to a
C2-substituted acrylate.'> This strategy is particularly
attractive since it employs easily available starting mate-
rials, in particular substituted acrylates.'® The versatile
method of preparation of aminoalkylphosphinic acids
described by Baylis and co-workers also provides a large
molecular diversity.!” Moreover, most of the
diastereomers can be separated by reverse phase HPLC
(RP-HPLC) after deprotection of the phosphinyl moi-
ety.'® Asa consequence, this strategy has been successfully
employed for generating large librairies of phosphinic
inhibitors with wide varieties of substituents and absolute
configurations.!”"* However, to our knowledge, no
preparation of C2 and C3 bis-substituted aminoalkyl
phosphinate Xaa\y(PO,H-CH)Pro has been formally
reported in the literature. We investigated the conjugate
addition of a bis-silyl derivative of benzyloxycarbonyl-1-
aminoethyl-1-phosphinate 3 on to methyl 1-cyclopentene-
I-carboxylate as a straightforward method for generating
an orthogonally protected Alay(PO,H-CH)Pro tem-
plates.

Compound 3 was prepared as a racemic mixture as
previously described.'”!° The conjugate addition of 3 on
to methyl 1-cyclopentene-1-carboxylate was carried out
using hexamethyldisilazane for the generation of the
nucleophilic trivalent form of the phosphinic acid. The
adduct was protected in situ using 1-bromoadamantane
and silver oxide (Scheme 2).2° The dipeptide isostere 4 was
isolated as a complex mixture of diastereomers which can
be separated by RP-HPLC. Saponification of the methyl
ester and standard peptide coupling to phenylalanyl(4-
carboxymethyl)aniline gave tripeptide 5 in low yield
(37%). This might be the result of a concurrent saponifi-
cation of the adamantane as previously observed.?!
Deprotection of the benzyloxycarbonyl moiety was car-
ried out using ammonium formate and 10% Pd-C.*
Indeed, previous attempts for hydrogenolyzing the benzyl
carbamate under an hydrogen atmosphere caused a
significative deprotection of the adamantyl ester. Acetyl-
ation followed by acidolysis of adamantyl ester 6 yielded
pure Ac-Alay(PO,H-CH)Pro-Phe-p CMA 1.2 Only three
of the eight possible diastereomers of 1, generated by the
creation of three stereogenic centers, were observed by
RP-HPLC. The uncharged derivative of acid 1, methyl
ester 2,2 was obtained in quantitative yield by treatment
of compound 1 with diazomethane in THF. Even though
some diastereomers of 1 and 2 could be separated by

8
. 1- HMDS

ZHNT PH 5 Ad-Br
OH Ag,0 J\(I?
3 4 Z-HN” F
46% AdO CO,Me
CO,Me 4

(mixture of diastereomers)

1- 4N NaOH/MeOH

2- Phe-pCMA,
DCC, HOBT J\(,?
RL-HN P
37% R?0

CO-Phe-pCMA

1- HCO,  NH,* Pd-C 5((R!=Z; R?= Ad)
2- AcCl <

3-TFA
4- RP-HPLC purification 1(R'=Ac;R?2=H) 19%
CH,N,
quant.

2 (R'=Ac; R?=Me) quant.

Scheme 2. Synthesis of Alay(PO,H-CH)Pro-containing pep-
tides 1 and 2.

semi-preparative RP-HPLC, the mixture was used in
preliminary biological assays.

3. Biological evaluation of phosphinic pseudopeptides as
inhibitors of hCyp-18

Phosphinic tripeptide isosteres were tested both as ligands
of hCyp-18 and inhibitors of its PPlase activity. Fluori-
metric titration of Trp121'! showed that compounds 1
and 2 bind to hCyp-18 (1: K;=107+6 uM; 2: K;="74+4
puM) with an affinity equivalent to the reference tripeptides
Ac-Ala-Pro-Phe-pNA (K;=140+40 uM) and Suc-Ala-
Pro-Phe-pCMA (K =55+6 pnM). Unfortunately, neither
1 nor 2 were able to inhibit the cyclophilin-catalyzed
isomerization of the model subtrate Suc-Ala-Ala-Pro-
Arg-pNA. This indicates that these compounds interact
close to hCyp-18 Trpl2l. In turn, the Alay(PO,R-
CH)Pro (R is H or CH;) moieties do not fit inside the
proline recognition pocket which catalyzes the cis—trans
isomerization.5>*

In summary, we reported herein an expeditious synthesis
of the orthogonally protected phosphinic Ala-Pro isostere
Alay(PO,Ad-CH)Pro and its use in solution peptide
synthesis for the preparation of Alay(PO,H-CH)Pro and
Alay(PO,CH;-CH)Pro-containing peptides.
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Compound 1 (as a mixture of at least three
diastereomers): 'H NMR (CD;0D): § (ppm) 7.97-7.88+
7.82-7.67+7.60-7.55 (3m, 4H, H Ar. pCMA), 7.27-7.17
(m, 5H, H Ar. Phe), 4.41-4.26 (bm, 1H, NCH(CH;)P),
3.87 (s, 3H, CO,CH; pCMA), 3.37-3.21+3.14-2.87+2.72—
2.48 (3m, 4H, P-CH+CH-CO cpentane+2Hp Phe), 1.99—
1.55 (bm, 9H, CH; Ac+3 CH, cpentane), 1.36-1.18 (m,
3H, NCH(CH,)P); '*C NMR(CD;0D): 6 (ppm) 172.5+
172.4+168.2+168.1+144.2+144.1+138.7+138.3+138.2+131.4
+120.4 (Ar C, complex), 56.8, 56.5, 52.5 (CH; pCMA),
46.0, 39.1, 38.8, 37.3 (CP Phe), 32.1, 28.6, 27.6, 27.2, 27.1,
22.6 (CH,C=0), 14.4+14.1+14.0 (NHCH(CH,)P); 3'P
NMR (CD;OD, decoupled): ¢ (ppm) 51.9-51.2 (broad
lines); ES/MS (negative ionization): 543.6.
Compound 2 (as a mixture of seven diastereomers): 'H
NMR (CDCl,): 6 (ppm) 7.99-7.93+7.85-7.76+7.73-7.58
(3m, 4H, H Ar. pCMA), 7.34-7.13 (m, SH, H Ar. Phe),
4.48-4.38 (bm, 1H, NCH(CH,)P), 3.87 (s, 3H, CO,CH,
pCMA), 3.81-3.65 (m, 3H, PO,CH;), 3.30-3.17+3.07-
2.90+2.82-2.57 (3m, 4H, P-CH+CH-CO cpentane+2Hf
Phe), 1.98-1.57 (bm, 9H, CH; Ac+3 CH, cpentane),
1.37-1.13 (m, 3H, NCH(CH;)P); °C NMR (CDCl,): §
(ppm) 172.5+168.1+144.2+138.3+131.5+131.3+130.4+
129.6+129.4+127.8+126.6+121.0+120.8+120.5+120.2 (Ar
C), 56.7, 56.4, 53.2, 53.1, 52.5 (CH; pCMA), 50.0, 46.9,
46.0, 44.6, 39.0, 38.8, 37.3 (CB Phe), 33.7, 28.2, 27.9, 27.5,
27.0, 22.5 (CH,;C=0), 14.7+14.5+14.3+14.2 (NHCH-
(CH,)P); 3'P NMR (CDCl;, decoupled): § (ppm) 57.9,
57.8, 57.6, 57.5, 56.6, 56.5, 56.3; ES/MS: 557.5.
. Zhao, Y.; Ke, H. Biochemistry 1996, 35, 7356-7361.



