February 1996 SYNTHESIS 237

Synthesis of S^2 -Alkyl-2-thiouridines

Adel A.-H. Abdel-Rahman, Magdy A. Zahran, Ahmed E.-S. Abdel-Megied, Erik B. Pedersen, Claus Nielsen

^a Department of Chemistry, Odense University, Campusvej 55, DK-5230 Odense M, Denmark

b Retrovirus Laboratory, Department of Virology, Statens Seruminstitut, Artillerivej 5, DK-2300 Copenhagen, Denmark Fax +4566158780; E-mail EBP@OUKEMI.OU.DK

Received 1 June 1995; revised 3 September 1995

5-Substituted S^2 -alkyl-2-thiouracils 1a-i were treated with 1,1,1,3,3,3-hexamethyldisilazane and ammonium sulfate at reflux temperature and condensed with 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose in acetonitrile using trimethylsilyl trifluoromethanesulfonate as a catalyst to afford the corresponding protected nucleosides 2a-i which were deprotected with saturated ammonia in methanol. When the nucleosase was substituted with ethoxycarbonyl or cyano groups in the 5-position or was unsubstituted, the deprotection reaction of the nucleoside also resulted in replacement of the methylthio group. This was not observed with 5-alkyl and 5-methoxy substituents.

Singer et al. 1 reported that O^2 -ethyl and O^4 -methyl derivatives of uridine 5'-diphosphate (UDP) could be copolymerized with UDP or cytidine 5'-diphosphate (CDP), using polynucleotide phosphorylase. These copolymers were used as templates for DNA dependent RNA polymerase in the presence of $\mathrm{Mn^{2+}}$. O^2 -Alkylation of uracil (U) or thymine (T) is, in contrast to O^4 -alkylation, a relatively frequent result of treatment of double-stranded nucleic acids with N-nitroso alkylating agents. In single-stranded nucleic acids both O^2 - and O^4 -alkylation of U may be involved in the high carcinogenicity of these alkylating agents. $^{2-6}$

The reaction of nucleic acids with carcinogens of N-nitroso type showed that O^2 -alkylpyrimidines were the major products. Only a few examples of the corresponding S^2 -alkylated 2-thiouridines have been reported and they were typically prepared by alkylation of the corresponding 2-thio nucleoside. We thought that such compounds could be synthesized in a more straightforward manner by condensing S^2 -alkylated 2-thiouracils with appropriate sugar derivatives. Considering the interest in O^2 -methyl nucleosides in conjunction with DNA as mentioned above, we focused this work on the synthesis of S^2 -alkylated 2-thiouridine derivatives.

In the present investigation we have synthesized S^2 -methyl as well as the S^2 -ethyl-2-thiouracils 1 by alkylation of the appropriate 2-thiouracils according to the procedure of Brown et al. 10 and treated them according to the procedure of Wittenburg¹¹ with 1,1,1,3,3,3-hexamethyldisilazane and ammonium sulfate at reflux temperature in order to obtain the silylated derivatives which where condensed with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose in dry acetonitrile using trimethylsilyl trifluoromethanesulfonate as the catalyst according to the method of Vorbrüggen et al.¹² After chromatographic purification the β -anomers 2a-i were obtained in 61-93% yield. Deprotection of the hydroxy groups in the nucleosides 2a-g with ammonia in methanol afforded the corresponding S^2 -alkyl-2-thiouridine derivatives $3\mathbf{a} - \mathbf{g}$ in 40 - 96% yield after chromatographic purification.

The methylthio group was very susceptible to a nucleophilic substitution reaction and was in some cases replaced by a methoxy group. On deprotection of 2a we

1-3	R	R'	1-3	R	R'
а	Н	Ме	9	CH₂Ph	Ме
ь	Me	Me	f	Me	Et
С	Et	Me	g	OMe	Et
d	<i>n</i> -Pr	Ме	h	COOEt	Me
,			i	CN	Me

Scheme 1

Scheme 2

obtained 3a in 40% yield together with 4 in 34% yield. When deprotection of 2a was performed with sodium methoxide in methanol, we only isolated the O^2 -methylated compound 4 in 43% yield. Substitution of the meth-

43%

Table 1. Yields and Physical Data of the New Compounds Prepared

Compound	Yield (%)	mp (°C)	$[\alpha]_D^{34^a}$	Molecular Formulab	MS m/z (%)
2a	93				
2 b	90				
2c	91				
2 d	85				•
2e	76				
2f	93				$429 (M + H^{+})^{c}$
2g	91				$445 (M + H^{+})^{c}$
2h	61				
2i	70				
3a	40	152–153		$C_{10}H_{14}N_2O_5S$ (274.3)	274 (M ⁺ , 0.4)
3b	86	204-205	+ 25.73	$C_{11}H_{16}N_2O_5S$ (288.3)	288 (M ⁺ , 0.7)
3c	95	202-203	+ 33.33	$C_{12}H_{18}N_2O_5S \cdot 0.5H_2O$ (311.4)	302 (M ⁺ , 2)
3d	85	183-184		$C_{13}H_{20}N_2O_5S$ (316.3)	316 (M ⁺ , 3)
3e	80	132-134	+ 35.59	$C_{17}H_{20}N_2O_5S$ (364.1093)	364 (M ⁺ , 0.7)
3f	73	232-233	+ 24.33	$C_{12}H_{18}N_2O_5S$ (302.4)	302 (M ⁺ , 0.7)
3g	77			$C_{12}H_{18}N_2O_6S$ (318.4)	318 (M ⁺ , 0.05)

^a Specific rotation (3b, c, 3e, f) was measured in MeOH; c = 1.

Table 2. NMR Data of the New Compounds Prepared

1'-H), 7.77 (s, 1 H, 6-H)

Com- pound	1 H NMR (DMSO- d_{6} /TMS) δ , J (Hz)	$^{13}{ m C~NMR~(DMSO-}d_6/{ m TMS})$ δ
2a	2.07 (s, 6H, $2 \times COCH_3$), 2.11 (s, 3H, $COCH_3$), 2.51 (s, 3H, SCH_3), 4.34 (d, 2H, $J=4.1$, 5'-H), 4.41 (m, 1H, 4'-H), 5.31 (t, 1H, $J=6.1$, 3'-H), 5.43 (t, 1H, $J=6.1$, 2'-H), 5.97 (d, 1H, $J=5.7$, 1'-H), 6.05 (d, 1H, $J=7.8$, 5-H), 7.88 (d, 1H, $J=7.7$, 6-H)	14.20 (SCH ₃), 19.95, 20.15, 20.37 (3 × CO <i>C</i> H ₃), 62.68 (C-5'), 69.26 (C-3'), 72.07 (C-2'), 79.76 (C-4'), 88.92 (C-1'), 109.31 (C-5), 138.95 (C-6), 161.86 (C-2), 165.92 (C-4), 168.94, 169.20, 169.82 (3 × <i>C</i> OCH ₃)
2 b	1.86(s, 3 H, 5-CH ₃), 2.07(s, 3 H, COCH ₃), 2.08(s, 3 H, COCH ₃), 2.11 (s, 3 H, COCH ₃), 2.51 (s, 3 H, SCH ₃), 4.38 (m, 3 H, 4'-H, 5'-H), 5.33 (m, 1 H, 3'-H), 5.43 (t, 1 H, <i>J</i> = 6.2, 2'-H), 5.96 (d, 1 H, <i>J</i> = 5.9, 1'-H), 7.78 (s, 1 H, 6-H)	13.22 (SCH ₃), 14.26 (5-CH ₃), 19.97, 20.16, 20.39 (3×COCH ₃), 62.70 (C-5'), 69.21 (C-3'), 72.04 (C-2'), 79.71 (C-4'), 88.90 (C-1'), 117.85 (C-5), 134.81 (C-6), 160.80 (C-2), 167.00 (C-4), 168.94, 169.21, 169.82 (3×COCH ₃)
2 c	1.17 (t, 3 H, $J = 7.3$, CH ₂ CH ₃), 2.11 (s, 3 H, COCH ₃), 2.15 (s, 3 H, COCH ₃), 2.18 (s, 3 H, COCH ₃), 2.44 (q, 2 H, $J = 7.3$, CH ₂ CH ₃), 2.62 (s, 3 H, SCH ₃), 4.33 (d, 1 H, $J = 12.2$, 5'-H), 4.40 (br s, 1 H, 4'-H), 4.44 (dd, 1 H, $J = 12.5$, 2.9, 5'-H), 5.31	12.04 (CH ₂ CH ₃), 14.77 (SCH ₃), 20.12, 20.21, 20.31 (3×COCH ₃), 21.20 (CH ₂ CH ₃), 62.82 (C-5'), 69.84 (C-3'), 72.82 (C-2'), 80.44 (C-4'), 88.35 (C-1'), 124.74 (C-5), 131.82 (C-6), 161.21, (C-2), 167.87 (C-4), 168.90, 169.32, 169.72
2 d	(m, 2 H, 2'-H, 3'-H), 6.06 (d, 1 H, J = 4.9, 1'-H), 7.37 (s, 1 H, 6-H) 0.87 (t, 3 H, J = 7.2, CH ₃), 1.48 (hextet, 2 H, J = 7.3, CH ₂), 2.06 (s, 3 H, COCH ₃), 2.08 (s, 3 H, COCH ₃), 2.11 (s, 3 H, COCH ₃), 2.25 (t, 2 H, J = 7.8, CH ₂), 2.51 (s, 3 H, SCH ₃), 4.38 (m, 3 H, 4'-H, 5'-H), 5.35 (m, 1 H, 3'-H), 5.46 (t, 1 H, J = 6.2, 2'-H), 5.96	$\begin{array}{c} (3\times COCH_3) \\ 13.34 \ (CH_3), \ 14.24 \ (SCH_3), \ 19.94, \ 20.15, \ 20.35 \ (3\times COCH_3), \\ 20.80 \ (CH_2), \ 29.28 \ (CH_2), \ 62.72 \ (C-5'), \ 69.31 \ (C-3'), \ 71.90 \\ (C-2'), \ 79.80 \ (C-4'), \ 88.85 \ (C-1'), \ 121.54 \ (C-5), \ 134.69 \ (C-6), \\ 160.66 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
2e	(d, 1 H, J = 6.2, 1'-H), 7.67 (s, 1 H, 6-H) 1.96 (s, 3 H, COCH ₃), 2.08 (s, 3 H, COCH ₃), 2.12 (s, 3 H, COCH ₃), 2.61 (s, 3 H, SCH ₃), 3.74 (d, 1 H, J = 16.3, CH ₂), 3.77 (d, 1 H, J = 16.3, CH ₂), 4.03 (dd, 1 H, J = 12.4, 2.6, 5'-H), 4.22 (dd, 1 H, J = 12.4, 4.0, 5'-H), 4.31 (m, 1 H, 4'-H), 5.15 (m, 2 H, 2'-H, 3'-H), 6.01 (d, 1 H, J = 5.3, 1'-H), 7.21–7.32 (m, 6 H, H _{arom} , 6-H)	$\begin{array}{l} (3\times C\mathrm{OCH_3}) \\ 14.71 \ (\mathrm{SCH_3}), \ 20.01, \ 20.19, \ 20.34 \ (3\times C\mathrm{OCH_3}), \ 33.48 \ (\mathrm{CH_2}), \\ 62.73 \ (\mathrm{C-5'}), \ 69.97 \ (\mathrm{C-3'}), \ 72.74 \ (\mathrm{C-2'}), \ 80.30 \ (\mathrm{C-4'}), \ 88.47 \ (\mathrm{C-1'}), \ 123.00 \ (\mathrm{C-5}), \ 126.46, \ 128.34, \ 128.88 \ (\mathrm{C_{arom}}), \ 133.68 \ (\mathrm{C-6}), \\ 137.71 \ \ (\mathrm{C_{arom}}), \ 161.33 \ \ (\mathrm{C-2}), \ 167.51 \ \ (\mathrm{C-4}), \ 168.71, \ 169.10, \\ 169.54 \ (3\times C\mathrm{OCH_3}) \end{array}$
2f	1.28 (t, 3 H, J = 7.5, SCH ₂ CH ₃), 1.86 (s, 3 H, CH ₃), 2.06 (s, 3 H, COCH ₃), 2.08 (s, 3 H, COCH ₃), 2.11 (s, 3 H, COCH ₃), 3.14 (q, 2 H, J = 7.5, SCH ₂), 4.36 (m, 3 H, 4'-H, 5'-H), 5.32 (d, 1 H, J = 2.5, 3'-H), 5.42 (m, 1 H, 2'-H), 5.93 (d, 1 H, J = 5.0, 4'-H), 5.77 (4 H, CH)	13.25 (5-CH ₃), 13.96 (SCH ₂ CH ₃), 19.96, 20.16, 20.39 (3×COCH ₃), 25.74 (SCH ₂), 62.71 (C-5'), 69.26 (C-3'), 71.99 (C-2'), 79.74 (C-4'), 88.75 (C-1'), 117.98 (C-5), 134.86 (C-6), 160.07 (C-2), 167.02 (C-4), 168.92, 169.23, 169.81

 $(3 \times COCH_3)$

The microanalyses (3a-3d, 3f-3g) or HRMS (3e) data were in satisfactory agreement with the calculated values: $C \pm 0.44$, $H \pm 0.32$, $N \pm 0.45$; m/z + 0.0004 (M⁺).

[°] FAB MS (2f, g) was measured in DMSO + 3-nitrobenzyl alcohol.

Table. (continued)

 13 C NMR (DMSO- d_6 /TMS) 1 H NMR (DMSO- d_{6} /TMS) Compound δ , J (Hz) 1.27 (t, 3 H, J = 7.5, SCH₂CH₃), 2.05, 2.07, 2.11 (3×s, 9 H, $14.04 \text{ (SCH}_2\text{CH}_3), 19.97, 20.20, 20.39 \text{ (}3 \times \text{CO}\text{CH}_3\text{)}, 26.00$ 2g $3 \times \text{COCH}_3$), 3.12 (q, 2 H, J = 7.5, SCH₂), 3.70 (s, 3 H, OCH₃), (SCH₂), 55.95 (OCH₃), 62.74 (C-5'), 69.24 (C-3'), 71.75 (C-2'), 4.42 (s, 3 H, 4'-H, 5'-H), 5.32 (m, 1 H, 3'-H), 5.51 (t, 1 H, J = 7.5, 80.07 (C-4'), 88.94 (C-1'), 117.81 (C-5), 142.06 (C-6), 157.01 2'-H), 6.00 (d, 1 H, J = 7.5, 1'-H), 7.35 (s, 1 H, 6-H) (C-2), 161.69 (C-4), 168.90, 169.27, 169.87 ($3 \times COCH_3$) 13.96 (CH₃), 14.62 (SCH₃), 20.07, 20.24, 20.33 ($3 \times COCH_3$), 1.23 (t, 3 H, J = 6.9, CH₃), 2.05 (s, 3 H, COCH₃), 2.08 (s, 3 H, 2h COCH₃), 2.09 (s, 3 H, COCH₃), 2.52 (s, 3 H, SCH₃), 4.21 (m, 60.63 (OCH₂), 62.61 (C-5'), 69.37 (C-3'), 72.87 (C-2'), 80.40 (C-4'), 89.26 (C-1'), 111.49 (C-5), 143.48 (C-6), 161.60 (C-2), 2H, 5'-H), 4.35 (m, 2H, CH₂), 4.46 (m, 1H, 4'-H), 5.34 (t, 1H, J = 6.1, 3'-H), 5.46 (t, 1 H, $\tilde{J} = 5.8$, 2'-H), 6.00 (d, 1 H, J = 5.6, 161.80 (C-4), 163.60 (COOEt), 169.03, 169.23, 169.91 1'-H), 8.40 (s, 1 H, 6-H) $(3 \times COCH_3)$ 2i 2.07 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.10 (s, 3H, $14.75 \text{ (SCH}_3), 20.04, 20.15, 20.44 \text{ (3} \times \text{CO}\textsc{CH}_3), 62.30 \text{ (C-5')},$ COCH₃), 2.54 (s, 3 H, SCH₃), 4.39 (m, 3 H, 4'-H, 5'-H), 5.35 68.30 (C-3'), 72.89 (C-2'), 79.79 (C-4'), 90.00 (C-1'), 95.57 (CN), (t, 1 H, J = 6.0, 3'-H), 5.51 (t, 1 H, J = 4.5, 2'-H), 6.02 (d, 1 H, J = 4.5, 2'-H), 6.02 (d,114.54 (C-5), 147.87 (C-6), 161.99 (C-2), 163.89 (C-4), 168.93, J = 4.2, 1'-H), 8.72 (s, 1 H, 6-H) 169.04, 169.85 (3 × COCH₃) 3a 2.48 (s, 3 H, SCH₃), 3.61 (m, 2 H, 5'-H), 3.94 (m, 1 H, 4'-H), 14.07 (SCH₃), 60.60 (C-5'), 69.86 (C-3'), 74.52 (C-2'), 85.81 4.01 (m, 1 H, 3'-H), 4.11 (q, 1 H, J = 5.2, 2'-H), 5.23 (m, 2 H, (C-4'), 91.31 (C-1'), 108.73 (C-5), 139.16 (C-6), 162.28 (C-2), 3'-OH, 5'-OH), 5.58 (d, 1 H, J = 5.9, 2'-OH), 5.70 (d, 1 H, J = 5.3, 166.53 (C-4) 1'-H), 5.95 (d, 1 H, J = 7.7, 5-H), 8.08 (d, 1 H, J = 7.8, 6-H) **3**b 1.84 (s, 3 H, CH₃), 2.50 (s, 3 H, SCH₃), 3.66 (m, 2 H, 5'-H), 3.96 13.46 (CH₃), 14.21 (SCH₃), 60.71 (C-5'), 69.91 (C-3'), 73.43 (m, 1 H, 4'-H), 4.06 (m, 1 H, 3'-H), 4.14 (m, 1 H, 2'-H), 5.30 (m, (C-2'), 85.82 (C-4'), 91.31 (C-1'), 117.24 (C-5), 135.39 (C-6), 2 H, 3'-OH, 5'-OH), 5.62 (d, 1 H, J = 5.7, 2'-OH), 5.70 (d, 1 H, 161.21 (C-2), 167.74 (C-4) J = 5.3, 1'-H), 8.02 (s, 1 H, 6-H)3c 1.05 (t, 3 H, J = 7.4, CH₃), 2.26 (q, 2 H, J = 7.4, CH₂), 2.49 (s, 12.11 (CH₃), 14.19 (SCH₃), 20.59 (CH₂), 60.59 (C-5'), 69.96 3H, SCH₃), 3.65 (m, 2H, 5'-H), 3.96 (m, 1H, 4'-H), 4.04 (q, (C-3'), 74.66 (C-2'), 85.79 (C-4'), 91.47 (C-1'), 122.66 (C-5), 1 H, J = 4.1, 3' - H), 4.14 (q, 1 H, J = 5.3, 2' - H), 5.26 (m, 2 H,134.53 (C-6), 160.87 (C-2), 167.13 (C-4) 3'-OH, 5'-OH), 5.60 (d, 1 H, J = 5.8, 2'-OH), 5.70 (d, 1 H, J = 5.3, 1'-H), 8.01 (s, 1 H, 6-H) 3d0.86 (t, 3 H, J = 7.2, CH₃), 1.48 (hextet, 2 H, J = 7.2, CH₂), 2.2213.49 (CH₃), 14.08 (SCH₃), 20.30 (CH₂), 29.26 (CH₂), 60.57 (C-5'), 69.89 (C-3'), $74.6\overline{1}$ (C-2'), $85.7\overline{3}$ (C-4'), 91.37 (C-1'), (m, 2H, CH₂), 2.48 (s, 3H, SCH₃), 3.68 (m, 2H, 5'-H), 3.95 (m, 1 H, 4'-H), 4.03 (m, 1 H, 3'-H), 4.13 (q, 1 H, J = 5.1, 2'-H),120.86 (C-5), 135.08 (C-6), 160.74 (C-2), 167.09 (C-4) 5.21 (m, 2H, 3'-OH, 5'-OH), 5.56 (d, 1H, J = 5.7, 2'-OH), 5.69 (d, 1 H, J = 5.3, 1'-H), 7.99 (s, 1 H, 6-H)2.47 (s, 3 H, SCH₃), 3.58 (m, 4 H, CH₂, 5'-H), 3.94 (m, 1 H, 3e 14.14 (SCH₃), 33.14 (CH₂), 60.62 (C-5'), 69.83 (C-3'), 74.57 4'-H), 4.00 (m, 1 H, 3'-H), 4.10 (m, 1 H, 2'-H), 5.21 (br s, 2 H, (C-2'), 85.72 (C-4'), 91.44 (C-1'), 120.54 (C-5), 125.89, 128.08, 3'-OH, 5'-OH), 5.61 (br s, 1 H, 2'-OH), 5.68 (d, 1 H, J = 5.0, 128.35, 139.43 (C_{arom}), 136.16 (C-6), 161.19 (C-2), 166.71 (C-4) 1'-H), 7.23 (m, 5 H, H_{arom}), 8.09 (s, 1 H, 6-H) 1.28 (t, 3 H, J = 7.5, SCH_2CH_3), 1.82 (s, 3 H, 5-CH₃), 3.13 (q, 3f 13.43 (5-CH₃), 13.97 (CH₃), 25.50 (SCH₂), 60.67 (C-5'), 69.85 2H, J = 7.5, SCH_2), 3.63 (m, 2H, 5'-H), 3.92 (q, 1H, J = 3.1, (C-3'), 74.28 (C-2'), 85.73 (C-4'), 91.11 (C-1'), 117.28 (C-5), 4'-H), 4.02 (q, 1 H, J = 3.7, 3'-H), 4.12 (q, 1 H, J = 5.3, 2'-H), 135.37 (C-6), 160.48 (C-2), 167.59 (C-4) 5.20 (m, 2 H, 3'-OH, 5'-OH), 5.53 (d, 1 H, J = 5.8, 2'-OH), 5.67 (d, 1 H, J = 5.5, 1'-H), 7.99 (s, 1 H, 6-H)1.28 (t, 3 H, J = 7.3, SCH₂CH₃), 3.13 (q, 2 H, J = 7.3, SCH₂), 14.06 (SCH₂CH₃), 25.65 (SCH₂), 55.66 (OCH₃), 60.22 (C-5'), 3g3.61 (s, 3H, OCH₃), 3.67 (m, 2H, 5'-H), 3.97 (m, 1H, 4'-H), 69.73 (C-3'), 74.84 (C-2'), 85.62 (C-4'), 91.91 (C-1'), 118.17 4.06 (m, 1 H, 3'-H), 4.16 (m, 1 H, 2'-H), 5.21 (m, 1 H, 3'-OH), (C-5) 142.04 (C-6), 156.54 (C-2), 162.08 (C-4) 5.37 (m, 1 H, 5'-OH), 5.56 (m, 1 H, 2'-OH), 5.73 (d, 1 H, J = 4.8,1'-H), 7.94 (s, 1 H, 6-H)

ylthio group was also a concomitant reaction during deprotection of 2h. When 2i was deprotected, it was not possible to detect the corresponding O^2 -methyl derivative. The substitution reaction was followed by a demethylation reaction of the methoxy group affording 5-cyanouridine 7 in 11% yield. Also hydrolysis by water present in the methanol could explain the formation of compound 7.

Replacement of the methylthio group during the deprotection reaction was not observed when 5-alkyl- or 5-methoxy substituents were present in the uracil ring, **2b-g**, because of their electron-donating effect which retards the aromatic nucleophilic substitution reaction.

The compounds 3a-e, 4-7 were tested for their antiviral activity against herpes simplex virus (HSV-1) in Vero cells and against human immunodeficiency virus (HIV-1) in MT-4 cells, however, no activity was observed.

Anhyd MeCN was distilled from P_2O_5 followed by distillation from CaH₂. All other solvents were used after distillation. Analytical silica gel TLC plates 60 F_{254} and silica gel (230–400 mesh) were purchased from Merck. Optical rotations were measured with a Perkin-Elmer 141 polarimeter. NMR spectra were recorded on a Bruker AC 250 FT NMR spectrometer at 250 MHz for $^1\mathrm{H}$ NMR and 62.9 MHz for $^{13}\mathrm{C}$ NMR with TMS as an internal standard. EI mass spectra were obtained on a Varian MAT 311 A spectrometer. FAB mass spectra were recorded on a Kratos MS-50 spectrometer.

240 Papers SYNTHESIS

Preparation of 2-Ethylthiopyrimidin-4(1*H*)-ones 1f, g; General Procedure:

A solution of substituted 2-thiouracils (0.1 mol), EtI (0.1 mol) and 1 M aq NaOH (100 mL) and EtOH (200 mL) was stirred at 60 °C overnight. Half of the EtOH was evaporated off and the mixture allowed to cool. The solid was collected, dried and recrystallized from EtOH.

2-Ethylthio-5-methylpyrimidin-4(1H)-one (1 \mathfrak{h}); yield: 72%; colorless needles; mp 158°C.

¹H NMR (DMSO- d_6): δ = 1.28 (t, 3 H, J = 7.5 Hz, SCH₂CH₃), 1.87 (s, 3 H, 5-CH₃), 3.07 (q, 2 H, J = 7.5 Hz, SCH₂CH₃), 7.72 (s, 1 H, 6-H), 12.56 (s, 1 H, NH).

¹³C NMR (DMSO- d_6): δ = 12.29 (5-CH₃), 14.37 (CH₂CH₃), 23.95 (CH₂CH₃), 118.74 (C-5), 150.27 (C-6), 158.73 (C-4), 162.89 (C-2).

2-Ethylthio-5-methoxypyrimidine-4(1H)-one (1g); yield: 68%; colorless needles; mp > 300 °C.

C₇H₁₀N₂O₂S calc. C 45.14 H 5.41 N 15.04 (176.2) found 45.01 5.39 14.98

¹H NMR (DMSO- d_6): δ = 1.29 (t, 3 H, J = 7.5 Hz, SCH₂CH₃), 3.07 (q, 2 H, J = 7.5 Hz, SCH₂CH₃), 3.70 (s, 3 H, OCH₃), 7.52 (s, 1 H, 6-H).

¹³C NMR (DMSO- d_6): $\delta = 14.42$ (CH₂CH₃), 24.25 (CH₂CH₃), 56.10 (OCH₃), 130.54 (C-5), 143.55 (C-6), 151.23 (C-4), 157.87 (C-2).

Preparation of 2a-i; General Procedure:

2-Alkylthiopyrimidin-4(1H)-one derivatives 1a-i (8 mmol) were treated with 1,1,1,3,3,3-hexamethyldisilazane (30 mL) and (NH₄)₂SO₄ (50 mg) at reflux for 1 h (clear solution after 0.5 h). The solvent was removed in vacuo. The residue was dissolved in anhyd MeCN (20 mL) and 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose (1.71 g, 5.4 mmol) was added. The reaction mixture was cooled to $-30\,^{\circ}$ C. A solution of CF₃SO₃SiMe₃ (1.3 mL, 6.5 mmol) in anhyd MeCN (5 mL) was added dropwise with stirring. The mixture was stirred for 0.5 h at $-25\,^{\circ}$ C and then at r.t. for 0.5 h. The mixture was diluted with CH₂Cl₂ (200 mL) and extracted with ice-cold sat. aq

NaHCO₃. The organic phase was separated, washed with cold $\rm H_2O$ (3 × 150 mL), and dried (Na₂SO₄). The solvent was evaporated in vacuo to obtain the crude products which were chromatographed on a silica gel column using 5–8% MeOH/CH₂Cl₂ as eluent.

Preparation of 3-7; General Procedure:

Sat. NH₃ in MeOH (40 mL) was added with stirring to a solution of 2a-i (2-5 mmol) in MeOH (20 mL) at 0°C. The mixture was stirred at r.t. for 1 h and the solvent was evaporated in vacuo. The residue was chromatographed on a silica gel column with 5% MeOH/CH₂Cl₂ to give the products 3-7. Compound 2a (1.0 g, 2 mmol) was also treated with MeONa (2.2 mmol) in MeOH (30 mL) at 0°C and stirring at r.t. for 1 h. After neutralization with NH₄Cl (120 mg, 2.3 mmol), the solvent was removed in vacuo and the residue was chromatographed on a silica gel column with 7% MeOH/CH₂Cl₂ to give 4 in 43% yield.

 O^2 -Methyluridine (4); yield: 0.43 g (34%); mp 172–173°C (Lit.^{13–15} mp 173°C); $[\alpha]_0^{34} + 35.45$ (c = 1, H₂O).

Ethyl O²-Methyluridine-5-carboxylate (5); yield: 200 mg (19%); foam.

HRMS: C₁₃H₁₈N₂O₈, calc. 330.1063; found 330.1069.

 $^{1}\mathrm{H}$ NMR (DMSO- d_{6}): $\delta=1.24$ (t, 3 H, J=7.0 Hz, CH $_{3}$), 3.16 (s, 3 H, OCH $_{3}$), 3.60 (dd, 1 H, J=12.0, 2.2 Hz, 5'-H), 3.73 (dd, 1 H, J=12.0, 2.2 Hz, 5'-H), 3.92 (m, 1 H, 4'-H), 3.99 (t, 1 H, J=4.6 Hz, 3'-H), 4.07 (t, 1 H, J=3.6 Hz, 2'-H), 4.16 (q, 2 H, J=7.1 Hz, OCH $_{2}$), 5.15 (br s, 3 H, 2'-OH, 3'-OH, 5'-OH), 5.80 (d, 1 H, J=3.2 Hz, 1'-H), 8.94 (s, 1 H, 6-H).

 $^{13}\mathrm{C}$ NMR (DMSO- d_6): $\delta=13.93$ (CH $_3$), 55.78 (OCH $_3$), 59.80, 59.96 (OCH $_2$, C-5'), 68.91 (C-3'), 74.58 (C-2'), 84.91 (C-4'), 90.49 (C-1'), 110.38 (C-5), 144.03 (C-6), 162.19 (C-2), 163.26 (C-4), 164.92 (COOEt).

MS EI: m/z (%) = 330 (M⁺, 4).

 O^2 -Methyluridine-5-carboxamide (6); yield: 150 mg (15%); mp 174–176°C.

HRMS: C₁₁H₁₅N₃O₇ calc. C 301.091; found 301.090.

¹H NMR (DMSO- d_6): $\delta = 3.62$ (m, 2 H, 5'-H), 3.96 (m, 5 H, OCH₃, 3'-H, 4'-H), 4.13 (br s, 1 H, 2'-H), 5.11 (m, 2 H, 3'-OH, 5'-OH), 5.53 (br s, 1 H, 2'-OH), 5.76 (d, 1 H, J = 4.5 Hz, 1'-H), 7.50 (s, 1 H, 6-H), 8.82 (s, 2 H, NH₂).

¹³C NMR (DMSO- d_6): δ = 56.11 (OCH₃), 60.52 (C-5′), 69.52 (C-3′), 74.38 (C-2′), 85.35 (C-4′), 90.40 (C-1′), 111.30 (C-5), 143.74 (C-6), 155.42 (C-2), 163.69 (C-4), 168.95 (CO).

MS EI: m/z (%) = 301 (M⁺, 0.7).

Uridine-5-carbonitrile (7); yield: 151 mg (11 %); mp $188-190 ^{\circ}\text{C}$ (Lit. $^{16-18}$, mp $191-192 ^{\circ}\text{C}$).

- (1) Singer, B.; Fraenkel-Conrat, H.; Kusmierek, J.T. *Proc. Nat. Acad. Sci. U.S.A.* **1978**, *75*, 1722.
- (2) Singer, B.; Fraenkel-Conrat, H. Biochemistry 1975, 14, 772.
- (3) Sun, L.; Singer, B. Biochemistry 1975, 14, 1795.
- (4) Singer, B.; Kusmierek, J.T. Biochemistry 1976, 15, 5052.
- (5) Singer, B. Nature (London) 1976, 264, 333.
- (6) Singer, B. J. Toxicol. Environ. Health 1977, 2, 1279.
- (7) Ogihara, T.; Mitsunobu, O. Chem. Lett. 1982, 1621.
- (8) Sato, E.; Machida, M.; Kanaoka, Y. Chem. Pharm. Bull. 1980, 28, 1722.
- (9) Vorbrüggen, H.; Krolikiewicz, K. Angew. Chem. 1976, 88, 724.
- (10) Brown, T.H.; Blakemore, R.C.; Durant, G.J.; Emmett, J.C.; Ganellin, C.R.; Parsons, M.E.; Rawlings, D.A.; Walker, T.F. Eur. J. Med. Chem. 1988, 23, 53.
- (11) Wittenburg, E. Z. Chem. 1964, 4, 303.
- (12) Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234.

- (13) Brown, D. M.; Todd, Sir A. R.; Varadarajan, S. J. Chem. Soc. 1957, 868.
- (14) Kimura, J.; Fujisawa, Y.; Yoshizawa, T.; Fuknda, K.; Mitsunobu, O. Bull. Chem. Soc. Jpn. 1979, 52, 1191.
- (15) Kimura, J.; Yagi, K.; Suzuki, H.; Mitsunobu, O. Bull. Chem. Soc. Jpn. 1980, 53, 3670.
- (16) Prystas, M.; Sorm, F. Coll. Czech. Chem. Commun. 1966, 31, 3990.
- (17) Torrence, P.F.; Bhooshan, B.; Descamps, J.; De Clercq, E. J. Med. Chem. 1977, 20, 974.
- (18) Inoue, H.; Ueda, T. Chem. Pharm. Bull. 1978, 26, 2657.