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A general and efficient protocol for the enantioselective synthesis of sphingosine, phythosphingosine, and 4-substituted derivatives was
established. These compounds were obtained from a common intermediate prepared from butadiene monoepoxide by a synthetic sequence
involving enantioselective allylic substitution, cross-metathesis, and dihydroxylation.

Sphingolipids are important structural and functional com-
ponents of the plasma membranes of essentially all eukary-
otic cells. They play critical roles in many physiological
processes, including immune response, cell recognition,
adhesion, and apoptosis.' Recent studies implicate sphin-
golipids in many of the most common human diseases,
including diabetes,” cancers,” infection by microorganisms,*
Alzheimer’s disease,’ heart disease, and an array of neuro-
logical syndromes.® The most important sphingolipids are
sphingosine and phytosphingosine, which when acylated with
a fatty acid and glycosylated with galactose produce galac-
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tosylceramide (GalCer) and a-GalCer (KRN7000), respec-
tively (Figure 1). Recently, structurally modified sphin-
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Figure 1. Glycolipids GalCer and o-GalCer and sphingolipids.

gosines’ and phytosphingosines®® have attracted more
attention because some of their analogues have been observed
to introduce morphological changes in neuronal cells'® and
behave as enzyme inhibitors."'



Since sphingosine and its derivatives are available only
in limited amounts from natural sources and because of purity
requirements for biological testing, there is a growing interest
in developing efficient methods for their synthesis.'? These
compounds have been synthesized by various routes, but
primarily from compounds of the chiral pool, particularly
amino acids (L-serine)'® and carbohydrates.'* Asymmetric
syntheses based on the use of chiral auxiliaries, such as
sulfoxides,'® chiral aziridines,'® or chiral sulfur'” and nitro-
gen'® ylides, or on catalytic procedures, such as Sharpless
asymmetric epoxidation'® and dihydroxylation reactions,'®°
the aldol reaction,>' and organocatalytic procedures, have
also been described.?

Recently, we reported efficient procedures for the glyco-
sylation of ceramides that facilitated the synthesis of GalCer™
and KRN 7000.>* New analogues of these compounds
containing structural modifications in the sphingolipid moiety
have been reported very recently.* In this work, we describe
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a new and efficient enantioselective method for synthesizing
sphingosine (1), phytosphingosine (2), and new 4-substituted
derivatives (3, 4) (Scheme 1) partially protected. In the

Scheme 1. Retrosynthesis
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proposed retrosynthesis, compounds 1—4 can be obtained from
a common intermediate 5 (Scheme 1). Nucleophilic substitution
at position 4 in 5 must allow the introduction of different
substituents, affording the natural product and derivatives.
Compound 5 can be obtained by the dihydroxylation of
compound 6, which in turn can be synthesized from compound
7 by a cross-metathesis reaction. The main advantage of this
strategy is its high versatility, allowing the synthesis of not only
sphingosine and phytosphingosine but also a range of structural
analogues from a common precursor.

Chiral synthon 7 (NR, = phthalimido) was obtained by a
palladium-catalyzed dynamic kinetic asymmetric transforma-
tion (DYKAT) from the racemic butadiene monoepoxide
(8)*° (Scheme 2).

Scheme 2. Synthesis of Alkene 6
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Initially we explored the cross metathesis reaction using
the second generation Grubbs catalyst, which is compatible
with a wide range of functionalities.'**'*"17-1%" In prelimi-
nary screening experiments, compound 7 was reacted with
a 2-fold excess of 1-hexadecene (9) in refluxing dichlo-
romethane to afford 6 at a 82% yield and an E/Z ratio of
18:1 (Scheme 2). Since the metathesis reaction proceeds
under thermodynamic control, both the yield and stereose-
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lectivity can be improved by increasing the 9/7 ratio and
the reaction time. In this way, using 4 equiv of 9 and
maintaining the reaction for 12 h, compound 6 was obtained
in an quantitative yield, and the E isomer was exclusively
detected by NMR.

Compound 6 was then reacted with OsO,/NMO to obtain
a mixture of compounds 5 and 10 in an almost quantitative
yield in a ratio of 3.3:1 (Scheme 3) (entry 1, Table 1).

Scheme 3. Dihydroxylation of Alkene 6
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Table 1. Dihydroxylation of Alkene 6

entry reagent temp (°C) yield (%) ratio 5:10

1 0sOy/NMO rt 99 3.3:1
2 0sO4/NMO 0 57 3.4:1
3¢ 0sO4/NMO -78 95 3.4:1
4b 0sOy/NMO —78 93 3.8:1
5 AD-MIX o rt

6 AD-MIX p¢ rt

7 [Os]/(DHQ):PYR® rt 99 5.1:1

“0s0, (1 equiv) and TMDA (1.1 equiv) were used. ” TEEDA was used
astheligand. © Ligand (DHQ),PHAL. Ligand (DHQD),PHAL. ¢ K,0sO,(OH),
(0.02 equiv), (DHQ),PYR (0.03 equiv), CH;SO,NH, (1.2 equiv), K,CO;
(0.03 equiv), NaHCO; (0.03 equiv), K;Fe(CN)g, (0.03 equiv).

Decreasing the temperature had a negative effect on the yield
and no effect on the stereoselectivity (entry 2). An attempt
was made to increase the stereoselectivity by carrying out
the reaction at —78 °C and using stoichiometric amounts of
0Os0O; in the presence of different diamine ligands. When
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tetramethylethylenediamine (TMEDA) was used, the ste-
roselectivity was similar to that reported in entry 1 (entry
3). The use of tetracthylethylenediamine (TEEDA) slightly
increased the 5/10 ratio to 3.8:1, in an 93% yield (entry 4).

It has been reported that the asymmetric dihydroxylation
reactions of related substrates afforded excellent yields and
stereoselectivities of the L-Iyxo and D-xylo phytosphingosines,
using AD-MIX a and S, 1respectively;27’28 however, when
compound 6 was treated with commercial AD-MIX mix-
tures,?’ no reaction was observed (entries 5, 6, Table 1). The
reaction was attempted using a freshly prepared mixture of
[K,0s0,(OH)4] and [K3Fe(CN)¢] in the presence of ligands
(DHQD),-PHAL or (DHQ),-PHAL, in ‘BuOH/H,0 (1:1), but
unfortunately, the starting material was again exclusively
recovered. Finally, in the presence of K,O0sO,(OH),]/
[K3Fe(CN)s]/(DHQ),PYR, compounds 5/10 were obtained
in a quantitative yield with a ratio of 5.1:1 (Entry 7).

With compound § in hand, the next step involved the
selective protection of the hydroxyl groups at positions 1
and 3 and the activation of the 4-OH as a leaving group.
We initially attempted the simultaneous protection of 1- and
3-OH by reaction with ‘Bu,Si(OTf), and further activation
of the 4-OH as a triflate. However, the subsequent elimination
provided a very poor yield of the sphingosine derivative.
Alternatively, 5 was reacted with TBDPSCI, affording
compound 11 in an 89% yield, which was then treated with
thionyl chloride and RuO,/NalO,, affording sulfate 12 in a
quantitative yield (Scheme 4).3

Scheme 4. Synthesis of Key Intermediate 12 and Sphingosine
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Compound 12 was then reacted with DBU in the presence
of tetrabutylammonium iodide to obtain compound 13 in an
82% yield.® Further deprotection of 13 by reaction with
TBAF in THF at room temperature and treatment with
hydrazine afforded sphingosine (1) in an 82% yield.

Similarly, 12 was also reacted with benzoic acid and
Cs,COs, to produce compound 14 in a 91% yield (Scheme
5). This excellent regioselectivity was also observed for other
nucleophiles and was atributed to the steric and electronic
interactions between neighboring sustituents and nucleo-
philes.® Compound 14 was also deprotected by reacting it
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Scheme 5. Synthesis of Phytosphingosine (2)
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with TBAF and hydrazine to furnish phytosphingosine (2)
in an 89% yield. NMR spectra and optical rotation of
compounds 1'*" and 2%’ match the reported values for the
natural products.

The possibility to obtain analogues of phytosphingosine
modified at position 4 was illustrated by synthesizing the
new 4-mercapto and the 4-azido derivatives (Scheme 6).

Scheme 6. Synthesis of Phytosphingosine Derivatives 15 and 16
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Thus, compound 12 was reacted with BzSH and Cs,CO; to
render compound 15 in an 87% yield. In a parallel experi-
ment, compound 12 was reacted with sodium azide in the
presence of catalytic 15-crown-5 to afford compound 16 in
an 89% yield.

(27) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483-2547.

(28) (a) Imashiro, R.; Sakurai, O.; Yamashita, T.; Horikawa, H.
Tetrahedron 1998, 54, 10657-10670. (b) Mormeneo, D.; Casas, J.; Llebaria,
A.; Delgado, A. Org. Biomol. Chem. 2007, 5, 3769-3777.

(29) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. Chem.
1990, 55, 1439-1446.

208

In conclusion, D-erythro-sphingosine (1), N-phtalimido-
D-lyxo- (5), D-ribo-phytosphingosine (2), and 4-mercapto (15)
and 4-azido (16) analogs were prepared by a highly efficient
and enantioselective procedure (Scheme 7). This procedure

Scheme 7. Synthesis of Compounds 1, 2, 5, 15 and 16 from 7
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starts from butadiene monoepoxide and uses a Pd-catalyzed
DYKAT process, a cross-metathesis using a second genera-
tion Grubbs catalysis and a dihydroxylation reaction to
produce the key intermediate 5. From this intermediate, the
target compounds were obtained by protection, substitution,
or elimination of 4-OH and deprotection. This procedure is
the most efficient for preparing 1 and 2 using asymmetric
synthesis procedures and opens the way for preparing a large
variety of 4-phytosphingosine derivatives.
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