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Comparison of the chemistry of [Me2Si(C5Me4)2]ZrPh2

and Cp*2ZrPh2 demonstrates that incorporation of a
[Me2Si] ansa bridge reduces the barrier for both (i) rotation
about the Zr–Ph bond and (ii) elimination of benzene to
generate a benzyne intermediate; furthermore, the [Me2Si]
ansa bridge promotes the reaction of two equivalents of
MeCN with the benzyne intermediate {[Me2Si(C5Me4)2]-
Zr(�2-C6H4)}, whereas insertion of only one equivalent is
observed with [Cp*2Zr(�2-C6H4)].

Zirconocene aryl complexes have attracted attention due to
their ability to generate aryne species which, as exemplified by
Buchwald’s Cp2Zr(η2-C6H4)(PMe3),

1 may be isolated in favor-
able situations. Such benzyne species are not only of intrinsic
chemical interest, but have also found considerable application
as reactive intermediates in organic synthesis.2 In this paper, we
describe further studies to delineate the ansa-effect in metallo-
cene chemistry 3 by reporting the influence of a [Me2Si] ansa-
bridge on (i) the barrier to rotation about a Zr–phenyl bond,
and (ii) the ability to generate a benzyne intermediate and the
impact on its subsequent reactivity.

The ansa-zirconocene phenyl complexes [Me2Si(C5Me4)2]Zr-
(Ph)Cl and [Me2Si(C5Me4)2]ZrPh2 are obtained by sequential
metathesis of [Me2Si(C5Me4)2]ZrCl2 with PhLi (Scheme 1), in
an analogous manner to the pentamethylcyclopentadienyl
derivatives, Cp*2Zr(Ph)Cl and Cp*2ZrPh2.

4 The molecular
structures of [Me2Si(C5Me4)2]Zr(Ph)Cl, [Me2Si(C5Me4)2]ZrPh2,
Cp*2Zr(Ph)Cl and Cp*2ZrPh2 have been determined by X-ray
diffraction (Table 1).5,6 As has been observed previously for
other pairs of [Me2Si(C5Me4)2]MX2 and Cp*2MX2 derivatives,3

the [Me2Si] ansa bridge exerts a subtle structural influence

which forces the cyclopentadienyl groups to tilt by ca. 4� such
that the ring normals lose coincidence with the Zr–Cpcent vector
and the range of Zr–C bond lengths increases (Table 1); the
coordination mode of the ligand thus moves from symmetric
η5,η5-coordination towards η3,η3-coordination.

Interestingly, the subtle structural difference between the
ansa [Me2Si(C5Me4)2]Zr(Ph)X and non-ansa Cp*2Zr(Ph)X
systems is manifested by a decrease in the barrier to rotation
about the Zr–Ph bond for the ansa complexes. The latter

Scheme 1

Table 1 Geometrical data for Cp*2Zr(Ph)X and [Me2Si(C5Me4)2]Zr(Ph)X derivatives

d(Zr–Cpcent)/Å d(Zr–C)/Å d(Zr–C) range/Å α/� β/� γ/� 

Cp*2Zr(Ph)H
[Me2Si(C5Me4)2]Zr(Ph)H
Cp*2Zr(Ph)Cl a

[Me2Si(C5Me4)2]Zr(Ph)Cl
Cp*2ZrPh2

a

[Me2Si(C5Me4)2]ZrPh2

2.233
2.224
2.250
2.234
2.279
2.263

2.519–2.543
2.472–2.590
2.509–2.589
2.466–2.620
2.541–2.599
2.485–2.644

0.024
0.188
0.080
0.154
0.058
0.159

141.1
129.9
139.5
128.7
139.3
127.9

141.0
122.5
138.1
120.6
137.7
119.1

0.05
3.7
0.18
4.1
0.8
4.4

a Average values for two crystallographically independent molecules.
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process can be conveniently probed by dynamic 1H NMR
spectroscopy because all five phenyl protons are chemically
inequivalent in the static solid state structure and rotation
about the Zr–Ph bond results in coalescence of the signals of
the two pairs of ortho and meta protons.7 Since a knowledge of
the factors that influence the barriers to metal ligand rotations
is of relevance to understanding the structure of polymers
obtained using metallocene catalysts,8 we have sought to quan-
tify the effect of a [Me2Si] ansa bridge on rotation barriers.

The low temperature (ca. 200 K) 1H NMR spectrum of
[Me2Si(C5Me4)2]Zr(Ph)Cl is indicative of a static structure, with
five different signals for the phenyl group, but upon warming
the signals attributed to the two pairs of ortho and meta protons
coalesce.9 In contrast to the coalescence behavior observed for
[Me2Si(C5Me4)2]Zr(Ph)Cl, the non-ansa counterpart Cp*2Zr-
(Ph)Cl retains a static structure on the NMR time-scale at 350
K.10 It is, therefore, evident that the barrier for rotation about
the Zr–Ph bond in the ansa complex [Me2Si(C5Me4)2]Zr(Ph)Cl
is substantially less than that in Cp*2Zr(Ph)Cl.11 The spectro-
scopic behavior of the pair of phenyl-hydride complexes,
[Me2Si(C5Me4)2]Zr(Ph)H and Cp*2Zr(Ph)H, is similar, with
only the former exhibiting fluxionality. Likewise, the diphenyl
derivatives [Me2Si(C5Me4)2]ZrPh2 and Cp*2ZrPh2 exhibit the
same trend, but the barrier for the latter complex is sufficiently
low that a quantitative comparison can be made; at 25 �C, rota-
tion about the Zr–Ph bond in [Me2Si(C5Me4)2]ZrPh2 is a factor
of ca. 400 faster than that of Cp*2ZrPh2.

9 Since the phenyl
ligands in the ansa zirconocene complexes [Me2Si(C5Me4)2]Zr-
(Ph)X (X = H, Cl) exhibit a more pronounced β-agostic inter-
action, thus providing an additional barrier to rotation than in
their non-ansa counterparts, Cp*2Zr(Ph)X,3f it is evident that
the more facile rotation in the ansa system may be attributed to
the reduction in steric interactions resulting from tilting (γ) of
the cyclopentadienyl rings, which increases the distance
between the ring methyl substituents and the phenyl ligand.12

As with other diphenyl zirconocene complexes,13 thermal
elimination of benzene from [Me2Si(C5Me4)2]ZrPh2 provides
a means of generating the benzyne intermediate {[Me2Si-
(C5Me4)2]Zr(η2-C6H4)}. For example, {[Me2Si(C5Me4)2]Zr(η2-
C6H4)} is trapped by ethylene to give [Me2Si(C5Me4)2]Zr-
(η2-C6H4CH2CH2),

5 as illustrated in Scheme 2.14 While Marks
has reported that the non-ansa system behaves analogously to
[Me2Si(C5Me4)2]ZrPh2 in the presence of ethylene, giving

Scheme 2

Cp*2Zr(η2-C6H4CH2CH2),
4b,15 the two systems behave very dif-

ferently in the presence of acetonitrile. Specifically, whereas
[Cp*2Zr(η2-C6H4)] is trapped by a single molecule of MeCN to
give Cp*2Zr[η2-C,N-C6H4{C(Me)��N}] (Scheme 3), the ansa

counterpart {[Me2Si(C5Me4)2]Zr(η2-C6H4)} is trapped by two
molecules of MeCN giving [Me2Si(C5Me4)2]Zr[η3-C,N,N-
C6H4{C(CH2)NC(Me)��NH}] under comparable conditions
(Scheme 2). The molecular structures of the acetonitrile inser-
tion products, Cp*2Zr[η2-C,N,N-C6H4{C(Me)��N}] and [Me2Si-
(C5Me4)2]Zr[η3-C,N,N-C6H4{C(CH2)NC(Me)��NH}] have been
determined by X-ray diffraction (Fig. 1).5 Key spectroscopic
evidence for the characterization of [Me2Si(C5Me4)2]Zr[η3-
C,N,N-C6H4{C(CH2)NC(Me)��NH}] is the observation of a
triplet resonance at 83.5 ppm (1JC-H = 157 Hz) in the 13C NMR
spectrum for the CH2 group. In addition to representing an
interesting example of an ansa effect, the formation of the
double insertion product is notable since other zirconocene
benzyne species typically only insert a single RCN molecule.13,16

Kinetics studies are in accord with the above reactions of
[Me2Si(C5Me4)2]ZrPh2 proceeding via a benzyne intermediate.
Specifically, the rate constants at 40 �C for the reactions with
C2H4 [k = 4.3(1) × 10�6 s�1] and MeCN [k = 4.0(1) × 10�6 s�1]
are experimentally indistinguishable and are also independent
of the concentration of substrate, as would be expected for rate
determining elimination of benzene and the formation of a
benzyne intermediate. Interestingly, the rate of elimination of
benzene from [Me2Si(C5Me4)2]ZrPh2 is noticeably faster than
that from Cp*2ZrPh2 by a factor of 1.7.17 A possible origin for
the enhanced rate may be related to the more facile rotation
about the Zr–Ph bond in [Me2Si(C5Me4)2]ZrPh2. Thus, since
elimination of benzene would be most favored for a configur-
ation in which the phenyl group that abstracts the hydrogen is
perpendicular to the incipient benzyne plane, the rate constant
would be expected to be greater for the ansa system because of
the reduced steric demands.

In summary, comparison of the chemistry of [Me2Si(C5-
Me4)2]Zr(Ph)X and Cp*2Zr(Ph)X complexes provides a further
illustration of the manner in which an ansa bridge may modu-
late reactivity. Incorporation of a [Me2Si] ansa bridge thus
facilitates rotation about the Zr–Ph bond in [Me2Si(C5Me4)2]-
Zr(Ph)X derivatives and promotes elimination of benzene
from [Me2Si(C5Me4)2]ZrPh2. Finally, the benzyne complex
so obtained, {[Me2Si(C5Me4)2]Zr(η2-C6H4)}, reacts with two

Scheme 3
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equivalents of MeCN, in contrast to the one equivalent that
reacts with the non-ansa counterpart [Cp*2Zr(η2-C6H4)].
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