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Abstract—The TTN phenolic oxidation, along with the N-protective group of the corresponding tripeptide derivatives, was
examined to accomplish construction of a cyclic isodityrosine derivative under solid-phase conditions. The desired cyclization was
effected under the TTN (thallium(III) trinitrate)/NMP–MeOH conditions to give the corresponding 17-membered ring lactam 12.
© 2001 Elsevier Science Ltd. All rights reserved.

Isodityrosine-related natural products are known not
only as components of the plant cell wall but also as
bioactive substances isolated from a wide range of
natural origins. Based on molecular-based consider-
ation, their prominent activities are apparently arise
from the rigid stereochemistry of the peptide chains
strongly supported by the diaryl ethers.1,2 From exten-
sive chemical investigation of these molecules, the
assembly of the diaryl ether moieties may be a crucial
step in synthesis of the isodityrosine-class natural prod-
ucts. Along with such effective methods as the Ullmann
reactions and SNAr reactions,3 our phenolic oxidation
by employing thallium(III) salts has been recognized as
a standard methodology (Scheme 1).4,5

However, some problems may be incurred with our
methodology: 1) difficulties of construction of diaryl

ethers in high yields, owing to easy tendency of pheno-
lic oxidation to polymerization. 2) More than stoichio-
metric amounts of poisonous thallium(III) salts are
usually required for syntheses of the cyclization of
halogenated phenols. Accordingly, work-up of the reac-
tion mixture involves troublesome procedures to obtain
the oxidation products. The solid-phase synthesis might
provide a possible solution to these problems by
anchoring molecules to prevent polymerization,6–8 by
washing out excess reagents from the substrate-loaded
resin, along with the feasibility of providing libraries for
effective screening of leads of new chemotherapeutic
agents. Such motivation prompted us to investigate the
solid-phase chemistry of the phenolic oxidation.9

At the outset, the cyclic isodityrosine derivative 6, was
synthesized as a reference by the usual solution proce-
dure (Scheme 2). Successive peptide-chain elongation
was commenced by coupling of dibromo-L-tyrosine
methyl ester 1 with the isoleucine derivative 2, leading
to 3. After deprotection of the Boc group in the N-ter-
minal, further connection with diiodo-L-tyrosine (4)
provided the tripeptide substrate 5 for the oxidation.
Upon treatment of 5 with TTN in THF–MeOH, the
desired cyclization effectively proceeded to afford the
cyclic diaryl ether 615 in 66% yield. The direction of the
cyclization was unambiguously determined by the mass
spectrum that exhibited a molecular ion possessing two
bromines and one iodine.10 Since 6 was obtained by the
solution procedure, this peptide skeleton would be syn-
thesized on an appropriate resin. Base-labile Fmoc
groups are adopted as N-protective groups to carry out
the repeated peptide elongation on resin. Although

Scheme 1.
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entries solvent yields of the oxidation (%)

1

2

3

DMF - MeOH (10 : 1)

CH2Cl2 - MeOH (10 : 1)

NMP - MeOH (10 : 1)

19

33

49
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Scheme 2. Reagents and conditions : (i) Boc-L-isoleucine (2), DCC, HOBt, NMM/THF (63%); (ii) TFA/CH2Cl2; (iii) Boc-diiodo-L-
tyrosine (4), BOP, Et3N/DMF (84% in two steps); (iv) TTN/THF–MeOH (8:1) (66%).

MeOH is the best solvent for the TTN oxidation, lack
of swelling of resin in this solvent would interfere with
the smooth solid-phase reaction. Accordingly, combina-
tions of MeOH with CH2Cl2, DMF, and NMP, known
as effective solvents for resin swelling, were inspected to
acquire the expected cyclization of 7 prepared by essen-
tially the same procedure as in the case of 5 (Scheme 3).
Upon comparison of the solvent pairs, the NMP–
MeOH provided the best results in the conversion of 7
into 8 (entry 3).

Based on these findings, the solid-phase synthesis of 12
was initiated with loading of Fmoc-dibromo-L-tyrosine
(9) (0.3 equiv. mol) onto the trityl resin (1 equiv. mol),12

leading to 10 in 81% yield (Scheme 4). Successive
peptide-chain elongation afforded the tripeptide bound

to the resin 11: the loading amount was confirmed to be
65% of the theoretical amount after cleavage of the
linkage under AcOH–TFE/CH2Cl2 conditions. Conse-
quently, the tripeptide 11 in hand was submitted to the
TTN oxidation, followed by switching the N-protective
group to an acetyl group, reduction,13 cleaving from the
resin, and methylation to give the desired cyclic isodity-
rosine 1215 in 17% yield as the sole oxidation product.14

In conclusion, the TTN oxidation of ortho,ortho-
dihalogenated phenols was demonstrated under the
solid-phase conditions to develop safe and effective
methodology for production of isodityrosine-class
bioactive molecules, as well as to aim at production of
a screening library of isodityrosine congeners. Opti-
mization of the reaction conditions is in progress.

Scheme 3.
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Scheme 4. Reagents and conditions : (i) i-Pr2NEt/CH2Cl2, 81%; (ii) 30% piperidine/DMF; Fmoc-L-isoleucine, HATU, i-Pr2NEt/
DMF; (iii) 30% piperidine/DMF; Fmoc-diiodo-L-tyrosine, HATU, i-Pr2NEt/DMF, 65% from 10 after acid hydrolysis (AcOH–
TFE/CH2Cl2); (iv) (a) TTN/NMP–MEOH (10:1), (b) 30% piperidine, (c) Ac2O, i-Pr2NEt, (d) NaBH4, (e) 10% AcOH, (f)
TMSCHN2, 17% from 11.
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(film) 1660 cm−1; �H (CDCl3) 0.89 (6H, complex), 1.08
(1H, m), 1.26 (1H, m), 1.49 (9H, s), 1.76 (1H, m), 2.52
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