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Abstract: A series of 6-cl’-triazolyl)uraeils 4a-f were subject to photolysis at 254 run in acetonitrile. The G, C5#- 
disubstituted triazoles 4a-c afforded pyrrolo[2,3-dlpyrimidines 5a-c whereas mono-substituted triazoles gave rise to 
polymeric mixtures. Cs-phenyl substituted adducts 4e,f generated pyrimido[4,5_clisoquinolines 7 and 8 via a novel 
photorearrangement process. 

Irradiation of l-phenyl-benzotriazoles or l-alkenyl-benzotriazoles 1 results in loss of nitrogen and has been shown to 

proceed via triplet diradical intermediates 21 which internally cyclize to afford either carbozole& or substituted indoles 

32b (eq 1). The azadiyl photocyclization of a l-aryltriazole system has been applied as an effective strategy for the 

synthesis of 7-methoxymitosene.3 The extension of this process to triazoles which are connected to an electron deficient ring 

has not been reported. In the case where a pyrimidine ring is involved, an approach to the synthesis of pyrrolo[2,3- 

dlpyrimidines would be available (eq 2). A number of biologically interesting compounds contain the ‘I-deazapurine 

structural subunit.4 In this communication a series a 6-(1’~triazolyl)uraciIs 45 were subject to photolytic conditions in 

anticipation of meeting this objective. 
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(eq 2) 

The substrates 4a-f were photolyzed in deoxygenated acetonitrile (O.CO3-0.01 M) using a Rayonet apparatus and 254 nm 

mercury lamps until the starting material was consumed as evidenced by TLC. Following solvent removal, the crude product 

was purified by either recrystallization or column chromatography over silica gel. 6 The results are summarized in Table 1. 
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Table 1. Photolvsis of &(I’-Triazolvl)uracik. 4a-f, at 254 nm in Acetonitrile, 

Triazole Irradiation Time (h1 Products Yield= 

4a R,, R, = CO,Et !?a R,, R, = CO,Et 

4b R, = CO,Et, R, = Ph 3.5 5b R, _ CO& R, = Ph 89% 

A 

5 

4e RI = Ph, R2 = CO&t 5 

41 R, E Ph, R2 z H 

5C 

0 

64% 

58% 

75%b 

62% 

38%’ 

a) All reported yields are for isolated and purified compounds. Analytical samples were obtained by 

recrystallization. b) This structure is consistent with the observed ‘H, 13C, IR, and mass spectral data 

c) The remaining mass balance from this reaction was mainly uncharacterized polymeric materials and 

some starling material. 

It is evident that the outcome of the photoreactions are highly dependant upon the substitution on the triazole ring. These 

results can be categorized into three groups. For substrates which have substituents in both the 4 and 5 positions of the 

triazole ring, i.e. 4a-c, respectable yields of the desired pyrrolo[Z,3-dlpyrimidines Sa-c are observed except in the case for the 

fused pyridotriazole 4d where only the product of solvent trapping 6 was observed.7 A limitation was observed for both Cd 

and Cg’ mono-substituted triazoles (4, Rl = Ph, CO$t, SO$‘h, R2 = H; Rr = H, R2 = C02Et) where mostly polymeric materials 
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were obtained. The presence of a radical stabilizing substituent in the Q position alone is not sufficient to promote efficient 

cyclization.8 However, in the two cases where a phenyl substituent is located in the 5-position of the triazole ring, i. e. 4e-f, 

the rearranged photoproducts 7 and 8 were isolated. 9 A mechanistic rational for the generation of these compounds in shown 

in Scheme 1. 

CHa 

7, 8 

Scheme 1 

Following loss of nitrogen, the transient diy19 should be sufficiently long lived to populate resonance rotomer 10 which can 

then undergo internal radical insertion ortho to the phenyl ring. 10 Hydrogen atom transfer would afford cycloadduct 11 

which then tautomerizes to the observed product. This rearrangement apparently has no precedent in the area of triazole 

photochemistry,2,lo,ll 

The synthesis of certain 1,3dimethylLpyrrolo[2,3-dlpyrimidine-2,4-diones 5a-c bearing substituents at both CT and CB has 

been realized by photolysis of 6-(l’-triazolyl)uracils 4a-c. An unexpected triazole photorearrangement process has been 

discovered for Cge phenyl substituted triazoles 4e-f and will be the subject of further explorations for generalized N-alkenyl-5, 

aryltriazole systems. 
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