

Bioorganic & Medicinal Chemistry Letters 8 (1998) 2885-2890

β -Analogs of PLG (L-Prolyl-L-Leucyl-Glycinamide): Ex-Chiral Pool Syntheses and Dopamine D₂ Receptor Modulating Effects

Christoph Thomas,^a Ursula Ohnmacht,^a Martin Niger^b and Peter Gmeiner^{*a,1} ^a Institut für Pharmazie und Lebensmittelchemie, Universität Erlangen - Nürnberg, Schuhstraße 19, D-91052 Erlangen, Germany ^b Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Received 19 June 1998; accepted 4 September 1998

Abstract: Starting from (S)- and (R)-aspartic acid enantiomerically pure β -proline derivatives were synthesized. These chiral building blocks were transformed into β -analogs of the dopamine receptor modulating peptide PLG. According to dopamine receptor binding studies, significant enhancement of [³H]pramipexole binding was observed for the isomeres **1a,b** and **2a-c**. The derivative **1b** revealed an activity comparable to PLG. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

The endogenous brain peptide L-prolyl-L-leucyl-glycinamide (PLG) has been demonstrated to exhibit a variety of biological activities including the potentiation of behavioral dopaminergic effects as well as the reversal of neuroleptic induced supersensitivity of dopamine receptors and oxotremorine induced tremors.^{1,2} PLG is proposed to exert these effects through the modulation of dopaminergic receptors in the central nervous system³. Thus, PLG induces an increase in the affinity of dopamine receptor agonists and enhances the number of high-affinity dopamine D₂ binding sites.⁴ PLG might be also involved in the stabilization of presynaptically localized D₂ autoreceptors which are known to exist in a supersensitive state.^{5,6} Since PLG exerts an enhanced resistance to inhibition of agonist binding by GTP or Gpp(NH)p, PLG is suggested to influence the interaction between dopamine D₂ receptors and G-proteins.⁴ Recent structure activity relationship studies on conformationally restricted PLG mimetics lead to the assumption that the bioactive conformation of PLG is a type-II β -turn (Scheme 1).^{7.8} This is also supported by an X-ray analysis of PLG which gave a type-II β -bend conformation stabilized by an intramolecular hydrogen bond connecting the Gly carboxamide and the Pro carbonyl.⁹ Furthermore, an intramolecular hydrogen bond between the carboxamide NH and the amino function of the prolinamide moiety is suggested to play a role in determining the bioactive conformation indicating a ψ_i torsional angle of approximately $0^{\circ,10}$ Structural modifications on the position of the prolyl nitrogen might give interesting insights into the bioactive conformation of PLG and result in more highly active and metabolically more stable drug candidates for the treatment of parkinsonism or schizophrenia. As an extension of our previously described EPC syntheses of β amino acids we herein report on the (R)- and (S)-configured β -prolyl analogs 1 and 2 including γ -benzyl

¹E-mail: gmeiner@pharmazie.uni-erlangen.de; Fax: +49(9131)859383

substitututed derivatives. Depending on the relative configuration, the steric demand of the benzyl group was anticipated to cause conformational restrictions on ψ_{I} . Furthermore the aromatic moiety might induce π -interactions with the binding site and thus enhance the biological activity.

Scheme 1

Synthesis

The preparation of the β -PLG **1a** and its diastereomer **2a** was based on our previously described EPC synthesis of β -proline.^{11,12} Thus, the *N*-benzyl protected (*S*)- β -proline **3** as well as the optical antipode **ent-3** were derived from (*S*)-Asp and (*R*)-Asp, respectively, when a 6-step reaction sequence afforded the final products in 67 % overall yield (*Scheme 2*).

Scheme 2

a: see: refs.^{11, 12} (67 %). b: NMM, isobutyl chloroformate, Leu-Gly-OEt, THF, -15°C - RT, 14h (**4**: 94 %, **6**: 51 %). c: NH₃, MeOH, -20°C - RT, 72h (98 %). d: H₂, Pd(OH)₂/C, MeOH, RT, 20h (91 %).

Peptide bond formation was best performed by activation of **3** with isobutyl chloroformate in presence of Nmethylmorpholine and subsequent coupling of the thus formed mixed anhydride with Leu-Gly-OEt. When employing THF as a solvent the process was superior to DCC/HOBt coupling affording **4** and **6** in 94 and 51 % yield, respectively. Upon treatment of the esters **4** and **6** with NH₃ / MeOH aminolysis could be accomplished resulting in formation of the glycinamide derivatives **5** and **7**. Hydrogenolytic *N*-deprotection was achieved with *Pearlman's* catalyst to give the target compounds **1a**¹³ and **2a**¹⁴.

a: see: refs. ^{11, 13} (86 %). b: LiN(SiMe₃)₂, BnBr, THF, -50°C - -20°C, 2.5h. c: LiAlH₄, THF, 0°C, 20h (53 % 10a + 33 % 10b for both steps).

ORTEP Plot of **9a** at a probability rate of 50 %

The preparation of the benzyl substituted PLG mimetics **1b,c** and **2b,c** was started from (*R*)- and (*S*)-Asp, respectively, involving the isomerically pure β -proline derivatives **17a,b** and **ent-17a,b** as the key intermediates. In particular, the introduction of the benzyl group was accomplished by deprotonation and regiospecific β alkylation of the dibenzyl protected aspartic acid dibenzylester **8**, which can be readily derived from (*S*)-Asp (*Scheme 3*).^{15, 16} The benzylation resulted in formation of the *threo* configured product **9a** and its *erythro* diastereomer **9b** in an 8:5 ratio. Separation of the isomers was possible whith RP column chromatography. Structural assignment was done by X-ray analysis of the homochiral isomer **9a**.

Employment of LiN(SiMe₃)₂ as a base and careful control of the reaction temperature was crucial in preventing the epimerization at the α -position and loss of the optical integrity of the alkylation. Reduction of **9a,b** (as a mixture of diastereomers) with LiAlH₄ in THF gave 10a and 10b, which could be easily separated by flash chromatography. The transformation of the diols 10a and 10b to the β -proline derivatives 17a and 17b involving stereospecific migration of the dibenzylamino group is outlined in Scheme 4. Activation of the diol 10a (10b) with MesCl in the presence of Et₃N formed the dimesylate 11a (11b) which was purified by low temperature flash chromatography. Subsequent rearrangement afforded the pyrrolidinium salt 14a (14b) which is obviously produced via the aziridinium salt 12a (12b) and the intermediate 13a (13b). Monodebenzylation of 14a (14b) was accomplished by catalytic hydrogenation (Pd(OH)₂). When using leq of H₂ 15a (15b) could be isolated in 76 % (92 %) yield. While substitution of the trans-mesylate 15b with NaCN in the presence of 18-crown-6 gave 16b in 82 % yield, reaction of 15a afforded only 27 % of 16a together with 25 % of 1,3-dibenzyl-2,5-dihydropyrrole. Hydrolysis of 16a in conc. HCl gave 17a in 92 % yield. On the other hand, treatment of the cis-configured isomer 16b showed partial epimerization resulting in formation of a 10:3 mixture of the diastereomers 17b and ent-17a. Purification of **17b** was performed by esterification of the crude product (SOCl₂, MeOH), flash chromatography of the resulting methyl esters and subsequent hydrolysis affording 17b in 70 % yield. Employing the same reaction sequence ent-17a and ent-17b were synthesized from (R)-Asp.

Scheme 4

a: Et₃N, MesCl, THF, -30 - -4°C, 1h, low temperature flash chromatography. b: H₂, Pd(OH)₂/C, MeOH, RT (15a: 76 %; 15b: 92 % for both steps). c: NaCN, 18-crown-6, DMSO, 50°C, 168h (16a: 27 %; 16b: 82 %). d: HCl_{conc.}, reflux (17a: 1h, 92 %; hydrolysis of 16b (20h) gave partial epimerization, separation was performed via esterification, flash chromatography and mild hydrolysis (5 % HCl, 80°C, 3h) 17b: 70 % for all steps).

Conversion of the β -proline derivatives **17a**,**b** and **ent-17a**,**b** into the β -PLG analogs **2b**,**c** and **1b**,**c**, respectively is outlined in *Scheme 5*. In practice, activation of **17a**,**b** and **ent-17a**,**b** by isobutyl chloroformate and N-methylmorpholine in THF, followed by addition of Leu-Gly-OEt afforded the tripeptides **18**, **20**, **22** and **24** in 87, 82, 92 and 77 % yield, respectively. Subsequent aminolysis gave the glycinamides **19**, **21**, **23** and **25**, which could be *N*-deprotected by hydrogenolysis in the presence of *Pearlman's* catalyst to leave the target compounds **1b**¹⁷, **1c**¹⁸, **2b**¹⁹ and **2c**²⁰.

Scheme 5

a: NMM, isobutyl chloroformate, Leu-Gly-OEt, THF, -15°C - RT, 1h, (**18**: 87 %; **20**: 82 %; **22**: 92 %; **24**: 77 %). b: NH₃, MeOH, -20°C - RT, 72h, (all: 99 %);. c: H₂, Pd(OH)₂/C, MeOH, RT, 20h.

Receptor Binding Studies

The PLG analogs produced in this study were tested for their ability to enhance the binding of the dopamine receptor agonist [³H]pramipexole to dopamine D₂ receptors prepared from bovine striatal membranes. ²¹ In this assay, membranes were incubated with [³H]pramipexole (0.5 nM) and the respective test compound for 2 h at 23°C. The results were expressed as percentages of specific binding compared to control membranes incubated without a modulator. Specific binding was determined as the difference between total binding and nonspecific binding measured in the presence of 1µM (+)-butaclamol. Except for **1c**, statistically significant modulatory effects were observed (p < 0.05).

Figure 1

Stimulation of [³H]pramipexole binding to striatal membranes by **1a**, **2a**, **1b**, **2b**, **1c** and **2c** in a concentration of 10^{-9} M. Results are means ±SEM of 3 to 5 experiments each carried out in triplicate; 'indicates that the data are significantly different from the control value (p<0.05).

Figure 1 shows the effects of PLG and the β -prolyl analogs **1a**, **2a**, **1b**, **2b**, **1c** and **2c** at a concentration of 10⁹M. Compared to PLG, which enhanced the binding of [³H]pramipexole to 109.0 %, the (*R*)-configured β -prolyl-analog **1a** was less active (103.7 %). On the other hand, the (*S*)-proline derived isomer **2a** showed moderate activity (106.6 %). The effects of the benzyl substituted tripeptides are also illustrated, demonstrating that the *trans*-substituted derivatives **1b** and **2b** displayed modulating activity (109.2 %, 107.7 %) similar to PLG. The loss of activity for the *cis*-substituted compound **1c** (99.6 %) and the moderate effect of **2c** (104.5 %) might be due to conformational restrictions on ψ_i caused by the steric demand of the *cis*-disposed benzyl substituent. Further SAR studies in this field are in progress and will be reported in due course.

Acknowledgments: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie.

References and Notes:

- 1. Chiu, S.; Paulose, C.S.; Mishra, R.K. Science 1981, 214, 1261.
- 2. Castensson, S.; Sievertsson, H.; Lindeke, B.; Sum, C.Y. FEBS Lett. 1974, 44, 101.
- 3. Mishra, R.K.; Chiu, S.; Chiu, P.; Mishra, C.P. Methods Find. Exp. Clin. Pharmacol. 1983, 5, 203.
- 4. Srivastava, L.K.; Bajwa, S.B.; Johnson, R.L.; Mishra, R.K. J. Neurochem. 1988, 50:960.
- 5. Elsworth, J.D.; Roth, R.H. In *The Dopamine Receptors*; Neve, K.A.; Neve, R.L., Ed.; Humana Press: Totowa, New Jersey, **1997**, pp 223-265.
- 6. Gmeiner, P.; Sommer, J.; Mierau, J.; Höfner, G. BioMed. Chem. Lett. 1993, 3,1477.
- 7. Sreenivasan, U.; Mishra, R.K.; Johnson, R.L. J. Med. Chem. 1993, 36, 256.

- 8. Subasinghe, N.L.; Bontems, R.J.; McIntee, E.; Mishra, R.K.; Johnson, R.L. J. Med. Chem. 1993, 36, 2356.
- 9. Reed, L.L.; Johnson, P.L. J. Am. Chem. Soc. 1973, 7523.
- 10. Valle, G.; Crisma, M.; Toniolo, C.; Yu, K.-L.; Johnson, R.L. Int. J. Peptide Protein Res. 1989, 33, 181.
- 11. Gmeiner, P.; Orecher, F.; Thomas, C.; Weber, K. Tetrahedron Lett. 1995, 36, 381.
- 12. Thomas, C.; Orecher, F.; Gmeiner, P. Synthesis 1998 in press.
- 13. **1a**: ¹H-NMR (DMSO-d₆, 400 MHz): $\delta \approx 0.82$ (d, J=6.5 Hz, 3H, CH(<u>CH_3)_2</u>), 0.87 (d, J=6.6 Hz, 3H, CH(<u>CH_3)_2</u>), 1.45 (dd, J=7.6/7.0 Hz, 2H, <u>CH_2</u>CH(CH_3)_2), 1.57 (tqq, J=7.0/6.6/6.5 Hz, 1H, CH_2<u>CH</u>(CH_3)_2), 1.74 (dddd, ²J=0 Hz ³J=7.6/7.0/7.0 Hz, 1H, NCH_2<u>CH_2</u>), 1.74 (dddd, J=0 Hz ³J=7.6/7.0/7.0 Hz, 1H, NCH_2<u>CH_2</u>), 2.67-2.78 (m, 3H, NCH_2CH_2CH), 2.64 (dd, ²J=10.6 Hz ³J=6.3 Hz, 1H, N<u>CH_2</u>CH), 2.90 (dd, ²J=10.6 Hz ³J=7.8 Hz, 1H, N<u>CH_2</u>CH), 3.53 (dd, ²J=16.8 Hz ³J=5.6 Hz, 1H, NH<u>CH_2</u>), 3.64 (dd, ²J=16.8 Hz ³J=6.0 Hz, 1H, NH<u>CH_2</u>), 4.19 (dt, J=7.6/7.4 Hz, 1H, NH<u>CH_1</u>), 7.06 (s, 1H, <u>NH_2</u>), 7.17 (s, 1H, <u>NH_2</u>), 8.05 (d, J=7.4 Hz, 1H, <u>NH</u>CH), 8.11 (dd, J=6.0/5.6 Hz, 1H, <u>NH</u>CH₂). HRMS (EI): calc.: 284.1848; found: 284.1845. α_{2}^{P} =-4.8° (1.0, EtOH).
- 14. **2a**: ¹H-NMR (DMSO-d₆, 400 MHz): $\delta = 0.82$ (d, J=6.5 Hz, 3H, CH(<u>CH_3)_2</u>), 0.87 (d, J=6.4 Hz, 3H, CH(<u>CH_3)_2</u>), 1.44 (dd, J=7.7/7.0 Hz, 2H, <u>CH_2</u>CH(CH_3)_2), 1.57 (tqq, J=7.0/6.5/6.4 Hz, 1H, CH_2<u>CH</u>(CH_3)_2), 1.66 (dddd, ²J=12.3 Hz ³J=8.0/6.4/6.3 Hz, 1H, NCH_2<u>CH_2</u>), 1.79 (dddd, ²J=12.3 Hz ³J=8.0/ 7.8/5.6 Hz, 1H, NCH_2<u>CH_2</u>), 2.68 (ddd, ²J=10.8 Hz ³J=7.8/6.4 Hz, 1H, N<u>CH_2</u>CH_2), 2.68-2.76 (m, 1H, NCH_2<u>CH</u>), 2.72-2.79 (m, 1H, N<u>CH_2</u>CH_2), 2.75 (dd, ²J=13.0 Hz ³J=7.9^a Hz, 1H, N<u>CH_2</u>CH), 2.86 (ddd, ²J=13.0 Hz ³J=10.2 Hz, 1H, N<u>CH_2</u>CH), 3.53 (dd, ²J=16.7 Hz ³J=5.5 Hz, 1H, NH<u>CH_2</u>), 3.63 (dd, ²J=16.7 Hz ³J=5.9 Hz, 1H, NH<u>CH_2</u>), 4.19 (dt, J=7.4/7.4 Hz, 1H, NH<u>CH</u>), 7.06 (s, 1H, NH_2), 7.16 (s, 1H, NH_2), 8.07 (d, J=7.4 Hz, 1H, N<u>H</u>CH), 8.10 (dd, J=5.9/5.5 Hz, 1H, N<u>H</u>CH₂). CHN: C₁₃H₂₄N₄O₃·³4 H₂O: calc.: C 52.42 H 8.63 N 18.81; found: C 52.39 H 8.32 N 18.24. $\alpha_2^{A}=-0.7^{\circ}$ (5.0, EtOH).
- 15. Gmeiner, P.; Junge, D.; Kärtner, A. J. Org. Chem. 1994, 59, 6766.
- For previous β-alkylations of aspartic acid derivatives, see: a) Seebach, D.; Wasmuth, D. Angew. Chem. Int. Ed. Engl. 1981, 20, 971; b) Gmeiner, P.; Feldman, P. L.; Margaret, Y. C.-M.; Rapoport, H. J. Org. Chem. 1990, 55, 3068.
- 17. **1b**: ¹H-NMR (DMSO-d₆, 360 MHz): $\delta = 0.85$ (d, J=6.3 Hz, 3H, CH(<u>CH_3</u>)₂), 0.90 (d, J=6.5 Hz, 3H, CH(<u>CH_3</u>)₂), 1.48 (dd, J=7.4/7.0 Hz, 2H, <u>CH_2</u>CH(CH_3)₂), 1.58 (tqq, J=7.0/6.5/6.3 Hz, 1H, CH₂<u>CH</u>(CH₃)₂), 2.41-2.51 (m, 1H, NCH₂<u>CH</u>CH₂), 2.48-2.54 (m, 1H, NCH₂CHCH₂), 2.58 (dd, ²J=10.9 Hz ³J=7.1 Hz, 1H, CH<u>CH</u>₂Ph), 2.67 (ddd, J=8.1/7.2/7.2 Hz, 1H, NCH₂<u>CH</u>CO), 2.86 (dd, ²J=10.9 Hz ³J=6.3 Hz, 1H, CH<u>CH</u>₂Ph), 2.90 (dd, ²J=9.2 Hz ³J=2.8 Hz, 1H, NCH₂<u>C</u>HCH₂), 2.93 (dd, ²J=11.1 Hz ³J=7.2 Hz, 1H, NCH₂CHCO), 3.18 (dd, ²J=11.1 Hz ³J=8.1 Hz, 1H, NCH₂CHCO), 3.58 (dd, ²J=16.8 Hz ³J=5.6 Hz, 1H, NHCH₂), 3.68 (dd, ²J=16.8 Hz ³J=5.9 Hz, 1H, NHCH₂), 4.26 (dt, J=7.4/7.4 Hz, 1H, NHCH), 7.09 (s, 1H, NH₂), 7.16-7.30 (m, 5H, arom.-H), 7.21 (s, 1H, NH)₂ 8.09 (dd, J=5.9/5.6 Hz, 1H, NHCH). §.22 (d, J=7.4 Hz, 1H, NHCH). HRMS: (EI) calc.: 374.2318; found: 374.2322. α_{P}^{2} =+10.4° (2.0, MeOH).
- 18. 1c: ¹H-NMR (DMSO-d₆, 360 MHz): $\delta = 0.87$ (d, J=6.6 Hz, 3H, CH(<u>CH_3)</u>₂), 0.91 (d, J=6.4 Hz, 3H, CH(<u>CH_3)</u>₂), 1.49 (dd, J=7.6/6.3 Hz, 2H, <u>CH_2</u>CH(CH_3)₂), 1.60 (tqq, J=6.3/6.6/6.4 Hz, 1H, CH₂<u>CH</u>(CH₃)₂), 2.29 (dd, ²J=13.2 Hz ³J=10.8 Hz, 1H, CH<u>CH</u>₂Ph), 2.39 (ddddd, J=10.8/7.1/6.4/3.5/3.5 Hz, 1H, <u>CH</u>CH₂Ph), 2.47 (dd, ²J=10.2 Hz ³J=7.1 Hz, 1H, N<u>CH</u>₂CHCH₂), 2.63 (dd, ²J=10.2 Hz ³J=6.4 Hz, 1H, N<u>CH</u>₂CHCH₂), 2.76 (dd, ²J=13.2 Hz ³J=3.5 Hz, 1H, CH<u>CH</u>₂Ph), 2.85-2.95 (m, 2H, N<u>CH</u>₂<u>CH</u>CO), 2.98 (dd, J=8.9/4.6 Hz, 1H, N<u>CH</u>₂CHCO), 3.52 (dd, ²J=16.9^a Hz ³J=5.3^a Hz, 1H, <u>CH</u>₂CO), 3.68a (dd, ²J=16.9 Hz ³J=6.2 Hz, 1H, <u>CH</u>₂CO), 4.26 (td, J=7.6/7.2 Hz, 1H, NH<u>CH</u>), 7.10 (s, 1H, N<u>H</u>₂), 7.12-7.28 (m, 5H, arom.-H), 7.25 (s, 1H, <u>NH</u>₂), 8.24 (dd, J=6.2/5.3 Hz, 1H, <u>NH</u>CH₂), 8.24 (d, J=7.2 Hz, 1H, <u>NH</u>CH). HRMS: (EI) calc.: 374.2318; found: 374.2317. α_{D}^{2} =-3.0° (2.0, MeOH).
- 19. **2b**: ¹H-NMR (DMSO-d₆, 360 MHz): $\delta = 0.84$ (d, J=6.5 Hz, 3H, CH(<u>CH₃</u>)₂), 0.89 (d, J=6.5 Hz, 3H, CH(<u>CH₃</u>)₂), 1.39-1.51 (m, 2H, <u>CH₂</u>CH(CH₃)₂), 1.59 (qqdd, J=6.5/6.5/6.8/6.8 Hz, 1H, CH₂<u>CH</u>(CH₃)₂), 2.46-2.59 (m, 1H + DMSO, <u>CH</u>CH₂Ph), 2.63 (dd, ²J=13.3 Hz ³J=9.5 Hz, CH<u>CH₂</u>Ph), 2.77 (dd ²J=11.0 Hz ³J=8.0 Hz, 1H, N<u>CH₂</u>CH), 2.80-2.89 (m, 1H, NCH₂<u>CH</u>CO), 2.82 (dd, ²J=13.3 Hz ³J=5.1 Hz CH<u>CH₂</u>Ph), 3.04 (dd ²J=11.0 Hz ³J=7.2 Hz, 1H, N<u>CH₂</u>CH), 3.13 (dd ²J=11.5 Hz ³J=7.6 Hz, 1H, N<u>CH₂</u>CH), 3.34 (dd ²J=11.5 Hz ³J=8.5 Hz, 1H, N<u>CH₂</u>CH), 3.57 (dd, ²J=16.6 Hz ³J=5.8 Hz, 1H, NH<u>CH₂</u>), 3.65 (dd, ²J=16.6 Hz ³J=5.8 Hz, 1H, NH<u>CH₂</u>), 4.24 (ddd, J=7.7/7.5/7.5 Hz, 1H, NH<u>CH</u>), 7.05 (s, 1H, NH₂), 7.11-7.33 (m, 5H, H-arom.) 7.18 (s, 1H, NH₂), 8.15 (dd, J=5.8/5.8 Hz, 1H, N<u>H</u>CH₂), 8.39 (d, J=7.7 Hz, 1H, N<u>H</u>CH). HRMS (EI): calc.: 374.2318; found: 374.2317. α_D^{2} =-27.3 (1.35, MeOH).
- 20. **2c**: ¹H-NMR (DMSO-d₆, 360 MHz): $\delta = 0.84$ (d, J=6.4 Hz, 3H, CH(<u>CH₃</u>)₂), 0.89 (d, J=6.8 Hz, 3H, CH(<u>CH₃</u>)₂), 1.44 (ddd, ²J=13.6 Hz ³J=8.8/5.6 Hz, 1H, <u>CH₂CH(CH₃)₂), 1.51 (ddd</u>, ²J=13.6 Hz ³J=9.5/4.9 Hz, 1H, <u>CH₂CH(CH₃)₂), 1.60-1.75 (m, 1H, CH₂<u>CH(CH₃)₂), 2.35-2.41 (m, 1H, CH<u>CH</u><u>Ph</u>), 2.33-2.44 (m, 1H, NCH₂<u>CH</u>CH₂), 2.50 (dd, ²J=10.0 Hz ³J=6.7 Hz, 1H, NCH₂<u>CH(CH₂), 2.64 (dd</u>, ²J=10.0 Hz ³J=5.7 Hz, 1H, NCH₂<u>CHCCH₂), 2.69-2.74 (m, 1H, CHCH₂<u>Ph</u>), 2.88-2.93 (m, 1H, NCH₂<u>CHCO</u>), 2.90-2.95 (m, 1H, NCH₂<u>CHCO</u>), 2.99-3.08 (m, 1H, NC<u>H</u>₂<u>CHCO</u>), 3.57 (dd, ²J=16.8 Hz ³J=5.7 Hz, 1H, NH<u>CH₂</u>), 4.24 (ddd, J=9.5/6.9/5.6 Hz, 1H, NH<u>CH</u>), 7.07 (s, 1H, NH₂), 7.13-7.19 (m, 3H, arom.-H), 7.24-7.29 (m, 3H, arom.-H, <u>NH₂</u>), 8.36 (d, J=6.9 Hz, 1H, <u>NH</u>CH), 8.37 (dd, J=5.8/5.7 Hz, 1H, <u>NH</u>CH₂). HRMS: (EI) calc.: 374.2318; found: 374.2309. α_D^{20} =-8.9° (2.0, CHCl₃).</u></u></u>
- 21. Ohnmacht, U.; Tränkle, C.; Mohr, K.; Gmeiner, P. Pharmazie 1998, in press.