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AbstractÐPreliminary SAR studies on the side chain of a new class of antiviral nucleosides have shown that terminal substitution in the
side-chain, with a halogen atom, lead to potent and highly speci®c anti-VZV agents. # 2000 Elsevier Science Ltd. All rights reserved.

We have recently reported1 the discovery of an entirely
new category of potent anti-VZV agents based on novel
deoxynucleoside analogues with an unusual ¯uorescent
bicyclic base bearing a long alkyl side-chain, with an
optimum length of C8±C10 for antiviral activity (1). The
role of this peculiar structural feature for the antiviral
activity is still not clear and our groups are carrying out
several structure±activity relationship studies, which
involve modi®cations of the lipophilic chain of this new
class of anti-VZV nucleosides.

The fact that a minimum length of eight carbon atoms
in the side chain is fundamental for potent anti-VZV
activity,1 suggests the presence of a lipophilic pocket in
relation to that position, potentially either in the thy-
midine kinase or the DNA polymerase of VZV. In order
to probe this, we planned to prepare several analogues
bearing di�erent groups at the end of the chain. We
report here the synthesis and the biological evaluation
of several new compounds, which contain a halogen

atom in the terminal position of the side chain. All the
compounds of this new class of anti-VZV nucleosides
were prepared by a Pd-catalysed coupling reaction of 5-
iodo-20-deoxyuridine with terminal alkynes, followed by
treatment of the 5-alkynyl nucleosides thus obtained,
with copper (I) iodide, leading to the desired ¯uorescent
derivatives.1,2 These two steps (coupling and cyclisation)
can be conducted in one ¯ask without isolating the 5-
alkynyl derivatives but, in the present case, the inter-
mediates were isolated and biologically evaluated.

The preparation of the appropriate terminal alkyne
precursors was achieved by converting 10-undecyn-1-ol
(2) into the desired halides 3a±d (Scheme 1). The ¯uoro-
alkyne 3a was obtained by treatment of the alcohol 2
with DAST,3 while 3b was prepared by reaction with
thionyl chloride, in the presence of pyridine.4

Carbon tetrabromide and triphenylphosphine5 were
used to obtain the bromo-alkyne 3c, and the reaction of
2 with iodine, in the presence of triphenylphosphine and
imidazole,6 gave the iodo derivative 3d. All of these
terminal alkynes (3a±d) were prepared in quantitative
yields and were successfully coupled to 5-iodo-20-deoxy-
uridine, leading to the 5-alkynyl nucleosides 4a±d7 which,
after the cyclisation step, gave the desired nucleosides
5a±d8,9 (Scheme 2). Compounds 4a±d and 5a±d were
characterized by high-®eld heteronuclear NMR and
mass spectrometry.

Compounds 4a±d and 5a±d were evaluated as inhibitors
of a variety of herpes viruses in vitro, including herpes
simplex virus type 1 (HSV-1) and type 2 (HSV-2), var-
icella-zoster virus, cytomegalovirus and HIV-1. Data
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for VZV in human embryonic lung (HEL) cells are
shown in Table 1. The antiviral activity (EC50) was
measured as the e�ective concentration required to
reduce virus plaque formation by 50%. In Table 1 the
activity of these new nucleosides is compared with that
of the lead compound 1 and the reference compound
acyclovir (ACV).

The target compounds 5a±d did not prove signi®cantly
di�erent from the lead compound 1 in their anti-VZV
potency. No cytotoxicity was observed for these com-
pounds at the highest concentration tested, while the 5-
alkynyl nucleosides 4a±d showed some cytotoxicity, with
a markedly lower anti-VZV activity, but still in the same
order as that of ACV. It cannot be excluded that some

Scheme 1. (i) DAST, DCM; ÿ78 �C to rt 1 h; (ii) SOCl2, pyridine, CH2Cl2; rt 1 h; (iii) CBr4, PPh3, Et2O; rt 2 h; (iv) I2, PPh3, imidazole, THF; rt 1 h.

Scheme 2.

Table 1.

Compound EC50 (mM)a EC50 (mM)a EC50 (mM)a EC50 (mM)a MCC (mM)b CC50 (mM)c

VZV YS Strain VZV OKA Strain TKÿ VZVd 07/1 Strain TKÿ VZVd YS/R Strain

4a 22 26 33 23 200 116
4b 2.8 3.6 10 9.6 200 74
4c 0.8 1.1 16 2.5 50 97
4d 6 13 36 31 >50 68
5a 0.014 0.022 >20 >20 >50 200
5b 0.012 0.007 15 13 >200 200
5c 0.031 0.026 >50 50 >200 >50
5d 0.034 0.061 >50 >50 50 >200
1 0.008 0.015 >50 >50 >50 >50
ACV 1.0 2.9 74 125 >200 >200

aEC50, 50% e�ective concentration, required to reduce virus plaque formation 50%.
bMCC, minimal cytotoxic concentration, required to alter microscopically detectable cell morphology.
cCC50, 50% cytotoxic concentration, required to inhibit Hel cell growth by 50%
dTKÿ, thymidine kinase-de®cient.
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of the observed activity of the alkynyl precursors arises
from in situ cyclisation to the corresponding bicyclic
system. As all the other compounds of this class,1 the
nucleosides 5a±d displayed no signi®cant activity against
thymidine kinase de®cient-VZV strains assays con®rm-
ing their dependence on VZV thymidine kinase-mediated
activation, for their biological activity, and did not show
activity against HSV-1, HSV-2, CMV or HIV-1 (data
not shown). The results obtained with these new
nucleosides are extremely encouraging and more exten-
sive work is currently in progress in our laboratories to
delineate the e�ect of side-chain modi®cations.
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