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STEREOSPECIFIC PHOTOCYCLIZATION OF a-BISULFENYLATED

KETO COMPOUNDS. 1 CIS-DIHYDROBENZOTHIQPHENES.
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Summary: Irradiation of e-bisulfenylated keto compounds in acetonitrile affords the cis-fused
dihydrobenzothiophenes which are dehydrated to benzothiophenes in high yields.
Introduction of a sulfur substituent to o position of a carbonyl group enhances the
thermodynamic acidity of an adjacent proton by 103 over a simple ketone and stabilizes an

2 Such a fact allows sulfur to be widely used

anion (enolate) at the carbon bearing sulfur,
in organic synthesis as a chemical control element.3 However, the effect of sulfur substitu-
ents in photcchemical reaction has received little atention because of the easiness of photo-
chemical homolytic C,5-bond cleavage.4 We have examined the photochemical behavior of a-
bisulfenylated keto compounds as part of our studies cn organic photochemistry.l

A number of o-bisulfenylated keto compounds (1 and 7-13) were prepared in high yield from
the corresponding B-keto sulfides by successive treatment with NCS/CC1 4 and thiophenol/tri-
e1'.1'1):'1a!rt'me/C[*IzCI2.5 Irradiation of an argon-degassed benzene solution (5):1(1-3 M) of keto
sulfide 1 with a 100-W high pressure mercury lamp through a Pyrex filter resulted in a rapid
disappearance of 1, and afforded diphemyl disulfide (2) (63%) and a 3:4 diastereomeric mixture
of 56 (49%) (eq 1). These products were considered to be formed by the radical mechzv.nism.4

A remarkable solvent effect was observed. The similar irradiation (30 min) of 1 in
acetonitrile gave dihydrothiophene 4 as the major product (43%) together with 2 (25%) and 3
(21%) (eq 2). Compound 4 was also obtained {20%) when methanol was used as the solvent.
The structural assignment of 4 (oil) was based on its spectroscopic data: m/e 210 (M+), 152
(M+-H20'); IR (neat) 3380 (OH) cm-l; 1H NMR [CD(313) § 2.45-3.40 (m, #, methylene), 3.10 (s, 1H,
exchangeable, OH), 4.77 (s, 1H, methine), 7.08-7.25 (m, 4H, aromatic), and the chemical con-
versions. The alcohol 4 was converted (Ac20/4—d.i.methylaniopyridine/pyridine) to the acetate
5, mp 135-137 °C; mfe 252 (M'); & 2.08 (s, %), 2.6-3.7 (m, 4H), 7.26-7.14 (m,4H). Tret-
ment of 4 with BFj3 -BtZO/CHZCIZ gave a quantitative yield of benzothiophene 6, mp 58-60 oC; 6
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3.13-4.02 (Asz-signal, a4H), 7.1-7,9 (m, 4H). The cis configuration of 4 was determined on
the basis of (a) the abnormally low chemical shift of the sulfur methine proton (the van der
Waals effect)7 (b} the strongest shift (shift slope 1,03) next to the hydroxyl signal (5.02)
in the Eu(fod)s study and (c) the low field shift of this signal (A§=-0,35 ppm) in acetate 5.
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The generality of this stereospecific photocyclization in acetonitrile was explored with
substrates 7-13 (Table 1). In most cases, cis-dihydrothiophenes were obtained as the
virtually sole product and the photoproducts were easily dehydrated to the corresponding benzo-
thiophenes by treating with BFS-EtZO. Photolysis of a-deuterated 11b gave 2 (46%) and 18b
(45%) with complete deuteration at the sulfur methine position (Table 1).

Fram these results, two mechanistic paths a and b {eq 3) may be postulated to account for
the formation of cis-dihydrothiophenes. Since S-aryl vinyl sulfides are well known to
photocyclize in a conrotatory f:«zsl-xicﬂ'm,s’9 the above results can be explained by the prior

10,11

enolization to la which photocyclizes to the thiocarbonyl ylide A (path a). The intra-

molecular protonation by the bridgehead hydroxyl group would lead to the cis (lihydroth:i.t:;phene:.lz
Alternatively, the reaction occurs by the direct cyclization mechanism via the intermediate
B (path b). The cis ring closure would be favored here by the steric reasons.

The presence of two sulfur substituents is essential for the above reactions and the
simple S-phenyl B-keto sulfides are photoinert under the same conditions. Furthermore, the
decreased yield of 18b compared with 18a indicates the involvement of deuterium-migration in

the reaction. From these observations, path a seems to be much preferable. The detailed

mechanistic studies of this novel photocyclization are in progress.



Table 1, Photolyses of 8-Keto Sulfides and Dehydration of the Photoproducts

a,b

starting
materials

photuproductsc

dehydration products
(rield %) d

PhS._SPh

Me O
10

PhS.-SPh

Ph” 0

11 a.r=H
b.R=D

PhHZCSISPh

0
12

PH

MeOzCHzCSISPh

Ph” "0
13

. = £
E.«O OH $4.66 15 (s3) L

h
OHsa,25 19 (46)

Meozcnzcsm Meozcuzcs: :s: :

(96)

S S
OH 63 4 16 ()f ‘ 23 (8

|
M

2 o9
PhS._S
!
Ph 25 9
Pthch,j:@
1
Ph
26 092)

(91)

3905




3906

Table 1. (continued) 2 a11 photolyses were carried out in acetonitrile (5)(10"3 M, Pyrex).
B Dehydration was effected by treating with BF-Et,0 in C}IZCI2 at roam temperature, © All
products were purely isolated by column chromatography using hexane/ether and the yields are
based on the starting materials consumed ("80% conversion). d Isolated yields. A quartz
filter was used. £ 16 was found to be easily dehydrated to 23 during work-up. £ Overall
yield from 9. h The major product was l-phenylthio-propan-2-one (38%).
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Since no enol tautomer could be detected by IR and H NMR (CDCl;, CDLOD, and CDyQN), the
possibility of photochemical enolization cannot be ruled out.

The photochemically gemerated thiocarbomyl ylides were shown to be sufficiently basic to
be protonated by alcohols like methanol.i‘b
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